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Abstract— A robust medical monitoring device should be
able to provide intelligent diagnosis based on accurate analysis
of physiological parameters in real-time. At the same time,
such device must be able to adapt to the characteristics of a
specific patient and desired diagnostic needs, and continue to
operate even in presence of unexpected artifacts and accidental
errors. A reconfigurable architecture is proposed for real-time
assessment of individual’s health status based on development of
a patient-specific health index and online analysis and fusion of
multi-parameter physiological signals. This is achieved by static
configuration of processing elements and communication blocks
in the architecture based on the patient’s diagnostic needs. The
proposed architecture is prototyped as a single integrated device
on an FPGA platform and is evaluated using multi-parameter
data from intensive care units (ICUs). Three representative test
cases of concurrently analyzing Blood Pressure, Heart Rate,
and Electrocardiogram (ECG) data from MIMIC database are
presented. The results show the effectiveness of the proposed
technique in eliminating false alarms caused by patient move-
ments, monitor noise, or imperfections in the detection schemes.

I. INTRODUCTION

Personalized health monitoring devices are useful in early
identification of medical conditions and facilitation of con-
ventional clinical diagnosis processes by analyzing envi-
ronmental and physiological data and providing intelligent
diagnostic assessment and alert feedback, either to the patient
or directly to the healthcare professionals.

A robust medical device should provide continuous real-
time monitoring of patient health status with high accuracy
and dependability. Towards this end, such device must be
able to adapt to an individual’s physiological characteristics
and different diagnostic needs while constantly delivering
trustworthy analyses even in presence of unexpected artifacts
and accidental errors. On the other hand, portable medical
monitoring devices are strictly restricted in size, weight and
power consumption while demanding rather high perfor-
mance to meet real-time constraints.

Interest in patient-specific and -adaptive monitoring has
increased in recent years as they have proved to be more
effective in identifying the potential health risks and spe-
cific clinical symptoms of an individual, compared with the
conventional population-based diagnostic flows [1][2]. One
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example includes adapting the data acquisition and signal
analysis stages to the individuals’ physical activity status [3].

Multi-parameter medical monitoring [4] and multi-sensor
data fusion [5] are popular techniques for unified clinical rea-
soning which improve the robustness of a system by exploit-
ing inherent redundancy in sensor data and signal processing.
These techniques are particularly useful for monitoring in
extreme circumstances and critical environments where the
analysis of intrinsically correlated signals is required, such as
intensive care units [6], battlefields [7], and outer space [8].
There are a variety of related works that use multi-parameter
monitoring [6][9] along with data aggregation and fusion
[10][11] to reduce false alarms and provide higher accuracy.

In this paper, we propose an embedded reconfigurable
architecture for personalized portable health monitoring de-
vices, providing the following unique features:

(i) Patient-specific Monitoring by integration of an ef-
fective set of biomedical signal processing techniques into a
custom processing element that can be configured for patient-
specific monitoring of different medical conditions.

(ii) Multi-parameter Monitoring by concurrent analysis
of different physiological signals using multiple processing
elements and fusion of their results.

(iii) Efficient Monitoring by coarse-grained reconfigura-
tion of the optimized processing elements to provide flexibil-
ity while meeting performance, cost, and energy constraints.

Although the proposed architecture will be finally imple-
mented as an application specific integrated circuit (ASIC),
for the purpose of prototyping, it is implemented as a single
integrated device on a field programmable gate array (FPGA)
platform. Multi-parameter patient data from a cardiac ICU,
as a representative scenario of clinical multi-parameter mon-
itoring, is used for the evaluation of the device.

We show that high accuracy diagnostic decisions can be
achieved by fusion of the results from multi-parameter signal
analysis. A voting mechanism is applied to concurrently
occurring alarms triggered from processing different phys-
iological signals (including Blood Pressure, Heart Rate, and
ECG) to detect abnormalities. Three representative examples
of multi-parameter analysis using data from MIMIC database
[12] are presented. The experimental results demonstrate
the effectiveness of the proposed approach in masking false
alarms caused by patient movements, monitor noise, or im-
perfections in the detection schemes. In contrast to threshold-
based techniques used by existing ICU monitors, the patient-
specific multi-parameter analysis can both identify potential
health risks and reduce false alarms.
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Fig. 1. Reconfigurable Architecture with Configurable PEs for Patient-Specific Multi-Parameter Monitoring, prototyped on an FPGA platform

II. ARCHITECTURAL OVERVIEW

In order to support adaptive and multi-parameter medical
monitoring in real time, an embedded medical device should
exhibit both flexibility and circuit customization. A flexible
design can be dynamically reconfigured in the field to meet
different application needs. Circuit customization on the
other hand allows achieving high speed and throughput, low
energy consumption, and small silicon area [13].

Commercial-off-the-shelf low power microcontrollers (e.g.
TI MSP430 [14]) mostly lack the processing capability to
support the high degree of computational complexity needed
for real-time multi-parameter analysis of biomedical signals.
On the other hand, although most available DSP solutions
(e.g. TI TMS320C54x [15] and ST220 [16] DSPs) offer
both high-performance and power-efficiency, they cannot
provide the application-specific customization beyond the
DSP domain, demanded for adaptive medical processing.

We propose an application-specific reconfigurable archi-
tecture for patient-specific multi-parameter medical moni-
toring with a trade-off between flexibility and circuit cus-
tomization. As shown in Figure 1, based on a hybrid
hardware/software approach, the proposed architecture in-
corporates a set of coarse-grained reconfigurable processing
elements, a configurable communication block, and a con-
figuration controller to enable the following unique features.

A. Patient-Specific Medical Monitoring

The Processing Elements (PEs) are the major components
in the proposed architecture, responsible for computation-
intensive feature extraction tasks. They are designed and opti-
mized as a single custom hardware module which supports (i)
a common set of computational kernels (e.g., Mean Analysis
and Correlation Analysis) shared by different biomedical
signal processing algorithms and (ii) application-specific
detection schemes (e.g., heart beat detection). The mean
analysis is an effective technique for assessing the degree of
dispersion of numeric physiological data (e.g. blood pressure

and heart rate) from their normal ranges, based on statistical
features such as mean, median, and standard deviation. The
correlation analysis involves continuous or window-based
auto- and cross-correlation coefficient calculation to identify
the morphological trends and changes in physiological wave-
form data (e.g. ECG and Arterial Blood Pressure (ABP)).

All employed techniques are tailored towards a patient-
specific scheme, where the individual’s personal physio-
logical characteristics are considered for detecting potential
abnormalities. In this approach, during the training phase
a physiological signature of the individual, called “Health
Index”, is compiled by aggregation of different features from
the collected signals and is used in the monitoring phase as
a reference point for detection of medical abnormalities.

Each processing element is designed as a coarse-grained
Configurable Datapath that its functionality can be altered
by the Configuration Controller. Also, a Cross-bar Switch
communication block is developed to enable the flexible
routing and seamless connection of input sensor data streams
to designated PEs. The system Configuration Parameters,
including the desired processing scheme (Opcode), input
sensor data stream (Source), precision of data processing
(Q22.10 or Q20.12 fractional formats), number of samples
in training phase (global window), and length of online
processing window (local window) are encoded into a VLIW-
like instruction (shown in Figure 1), sent by the embedded
processor. The configuration controller decodes the custom
instruction and adapts the communication, control, and data
paths accordingly. In the current prototype, the configuration
parameters are selected by the user, but they could also be
determined autonomously by the system in order to adapt to
user’s physical activities and environmental parameters.

B. Multi-Parameter Signal Analysis

Multiple PEs are integrated into the proposed architec-
ture for concurrent analysis of various physiological data
streams obtained from wearable sensors in order to gain a



more accurate, unified view of an individual’s health status
by the fusion of analysis results. In current experimental
settings, the input sensor data streams are emulated using
databases of pre-recorded physiological signals stored in
separate embedded memories, which can be replaced with
sensor communication interfaces in real scenario.

The homogeneous PEs and the flexible communication
block, although developed for multi-parameter signal anal-
ysis, inherently introduce redundancy in both input data
and computational engines, which further enables improved
accuracy and reliability, particularly in the face of sensor
failures or artifacts in data. In Section III-C we elaborate
two test cases where multi-parameter monitoring helps in
reducing false alarms by masking noisy data and artifacts.

C. Data Fusion

The last processing stage in the architecture is to fuse the
analysis results from different PEs into a unified diagnostic
decision. The data fusion unit can be reconfigured according
to specific diagnostic needs or the feedback from aggregated
results, in order to perform different levels of fusion, span-
ning from data- to feature- and decision-level fusion [17].

In this paper, we develop a simple decision fusion tech-
nique which concludes the final diagnostic decision through
a majority voting process. Along with the multi-parameter
analysis described above, the decision fusion can mask any
incorrect decisions derived based on analysis of individual
signals which may be corrupted due to errors in sensed data
or processing elements. This approach improves diagnostic
performance by reducing false alarms in case of noisy
data and maintains an appropriate level of operation (with
degraded performance) even in case of sensor or PE failures.

III. CARDIAC MULTI-PARAMETER MONITORING

This section presents the evaluation of the proposed archi-
tecture using multi-parameter data from a cardiac Intensive
Care Unit (ICU), prototyped on an FPGA platform. The data
used in this study are Systolic arterial blood pressure (ABP
Sys.), heart rate (HR), and ECG (lead II) waveform signals,
from the publicly available MIMIC database [12].

A. ABP and HR Monitoring using Mean Analysis

The monitoring flow starts by generation of a normal sig-
nature of the patient being monitored. The term “normal” is
defined here as a physiologically stabilized period, composed
of error-free patterns of the monitored signal. For blood
pressure (ABP) and heart rate (HR), the normal signature
of the patient is obtained by computing the mean (µg) and
standard deviation (σg) values of the sample data over a given
period of alarm-free observations, called “global window”.
In the online monitoring stage, this information is used to
monitor the local variability in the data by computing the
absolute deviation of the samples from the global mean
(Di = |Xi − µg|) and comparing against the global standard
deviation. Any absolute deviation of more than 3 times global
standard deviation is classified as an indication of a potential
abnormal event. This is based on the observation that blood

pressure (ABP) and heart rate (HR) signals are approximately
normally distributed [6] and therefore almost all their data
samples (99.7%) should reside within ±3σ range of the µ.

The results of mean analysis technique are compared with
the bed-side ICU monitor alarms available from the database,
which are generated based on a default set of thresholds
specified for each patient. The first and fourth rows of Figure
2 (a,b, and c) show the ABP Systolic and HR signals and
the average value computed from training phase for patient
#212 in the MIMIC database.

This patient is identified with CHF/pulmonary edema [10]
and the ICU monitor thresholds are set as follows: HR >
125 (bpm), ABP > 160, or ABP < 80 (mmHg). The
threshold-based ICU alarms and alarms generated by the
proposed mean analysis are presented respectively in the next
two rows following each signal (each bar indicates an alarm).
Here the first 2 hours of patient data is used to generate the
normal signature (global window size of 7200 samples) and
in the remaining time (about 39 hours) the online monitoring
is performed. The results shown in Figure 2 correspond to
three observation periods of about 10 minutes (600 sec) in
cases (a) and (b), and 50 minutes (3000 sec) in case (c).

To provide a fair comparison with ICU monitor results,
physiologically impossible values are excluded according
to the following rules: Systolic ABP: 50-240 (mmHg) -
Heart Rate: 15-220 (bpm) [18]. Therefore, no alarms are
generated when the abrupt changes in the signal amplitudes
are physiologically out of range, e.g. ABP in case (a) and
HR in all three cases.

Although the number of alarm events generated by the
mean analysis is comparable to those from the ICU monitor,
some differences occur, because the mean analysis technique
is based on a patient-specific threshold developed from the
data trend, rather than a fixed predefined threshold. For
instance, the ICU monitor does not generate any HR alarms
for the three test cases shown in Figure 2, because the upper
threshold of 125 bpm is too high to reach for the target
patient. As discussed in more details later, this leads to
significant heart rate changes and potentially critical events
being undetected.

B. ECG Monitoring using Correlation Analysis

The ECG monitoring is performed based on identifying
both morphological and rhythmic abnormalities in ECG
signals. A template matching technique based on continuous
correlation analysis is used for detection of heart beats (R
peaks in QRS complex) and their classification based on
the shape (QRS morphology) and rhythm (R-R interval, the
interval between two consecutive QRS complexes).

During the training period that has been synchronized with
the training phases for ABP and HR signals, a signature
of the normal ECG signal is obtained by generating a
patient-specific template from the beat pattern (P-QRS-T)
and average R-R interval. The first 96 samples of ECG signal,
covering most of P-QRS-T waves at a sampling rate of 125
Hz, are extracted and used as a template for finding 20



Fig. 2. Using Data Fusion for Masking Artifacts and Reducing False Alarms in Three Test Cases (Patient 212 from MIMIC Database) (a) Artifacts in
ABP Systolic: Masked by normal Heart Rate and ECG, (b) Congestive Heart: Low ABP, Abnormal R-R Intervals, and High Heart Rate, (c) Potential
Cardiac Abnormality: Simultaneous abnormalities in Heart Rate and ECG

normal QRS complexes through continuous correlation co-
efficient computation [19]. The normal ECG morphological
signature (i.e., beat template) for the patient is then generated
by identifying the median of 20 QRS patterns with size of 21
samples (10 samples to the left and 10 samples to the right
of R-peak). Since the beat detection algorithm employed in
this study is primarily based on finding the QRS complexes
with high correlation coefficient values (e.g., greater than
90%) comparing with the normal beats, any abnormal beat
patterns are automatically eliminated from the compilation
of the ECG signature. The accuracy of beat detection is
evaluated and verified using the records of 12 patients from
MIMIC database, and compared with the results from an
open source QRS detector [20] based on Pan, Hamilton, and
Tompkins algorithm. Moreover, in a similar patient-specific
manner, the statistical features of the R-R intervals in ECG
signal are obtained for detection of arrhythmic beats.

In the monitoring stage, the generated beat template
is constantly correlated against the incoming samples for
detecting QRS complexes, calculating R-R intervals, and
finding abnormalities. Additional rules are set to reduce the
false detections caused by artifacts and irregularities (e.g.
an increased amplitude in T wave complex), which do not
allow mistakenly recognizing a new “beat” within a period
of less than the average R-R interval minus 3 times standard
deviation (µRR−3×σRR). Also, similar to the mean analysis
technique, R-R invertals are compared with the average
value computed in the training phase (µRR), and an absolute
deviation of more than 3 times standard deviation (3×σRR)
indicates an irregularity in the heart beats.

The changes in R-R intervals (long R-Rs) are either caused

by missing beats or distorted ECG morphologies. It has been
demonstrated that QRS morphology and R-R intervals are
two effective features for identifying a number of diverse
cardiovascular abnormalities and arrhythmias, such as Atrial
Premature Contraction (APC) and Ventricular Premature
Contraction (PVC) [21]).

The last three rows in Figure 2 illustrate the trend of R-R
intervals, their average, and a sample duration of ECG signal
with abnormal R-R for patient #212. Alarms in the last row
are triggered whenever any of the beats are either missed
or morphologically distorted within one second period. Next
section presents a detailed analysis of the results shown.

C. Decision-Level Fusion and Final Diagnosis
The final diagnostic decision is concluded through system-

atic decision fusion based on multi-parameter analysis. Using
a voting mechanism, concurrent occurrence of majority of
alarms leads to a real abnormality detection by the fusion
unit. In other words, only the alarms which are in close prox-
imity (i.e., within 20-seconds) of other alarms triggered by
different physiological signals are accepted as “real alarm”.

Three representative test cases are illustrated in Figure
2 to demonstrate the efficacy of the proposed technique
in masking the false alarms caused by patient movement
artifacts, monitor noise, or the over-sensitivity and weakness
of detection schemes.

Figure 2 (a) presents a case where ABP, HR, and ECG
alarms appear far apart from each other. The ABP alarms are
generated because of the abrupt changes in ABP amplitude
(i.e., either >200 mmHg or <80 mmHg) possibly caused by
patient movement artifacts. This is also verified by checking
the corresponding ABP waveforms and monitor status alarms



in the database. All these alarms are indicated as false alarms
and are eliminated by the fusion unit since the analysis
results of other signals all report normality. Similar consid-
erations apply to the HR alarms that are masked since no
obvious continuous abnormality is observed in ECG signals.

Part (b) shows a time slot 2 hours after the case (a) from
the same patient, where the ABP, HR, and ECG alarms indi-
cate abnormalities concurrently. The ABP waveform shows
a sudden drop (to less than 80 mmHg) for around 3 minutes.
The HR becomes zero around the same time as a result of
the noisy status in ECG leads MCL1 and V, as reported by
monitor status alarms. Meanwhile, the ECG signal (from lead
II) is without obvious artifacts. The decision fusion analy-
sis indicates and validates the abnormalities reflected from
decreased ABP, irregular HR, and distorted ECG signals.

This event can be identified as a congestive heart symptom
that is a combination of low ABP, abnormal R-R intervals,
and high heart rate [10]. The highlighted period in the eighth
row displays the corresponding ECG period where the alarms
are shown. As the figure shows, the ECG morphology is
changed with reduced amplitude and higher R-R intervals
which is consistent with the high heart rate results.

In part (c), no monitor status alarm is reported within
the monitoring period and the waveforms appear noise-free.
Another potentially hazardous scenario can be inferred with
two sets of events, located at the start and end of the
observation window, where very high HR and decreased
R-R intervals occur concurrently. The fusion unit indicates
potential cardiac problems for these regions even without
seeing significant ABP abnormalities.

In none of the studied cases, the threshold-based ICU
monitor can effectively provide timely indications on the
cardiac abnormalities based on the heart rate signal, since the
monitor HR threshold is set at a very high value (125 bpm).In
contrast, the concurrent multi-parameter analysis based on
patient-specific parameters shows superior performance in
identifying potential health risks and reducing false alarms.

D. Hardware Prototype Results

A hardware prototype for the proposed architecture is
developed on a Xilinx Virtex-5 XC5VFX70T FPGA plat-
form. Table I reports the module-level hardware cost and
power consumption results (excluding memory overheads).
The prototype is utilizing only around 28% of look-up tables
(LUTs) and 17% of slice registers from the whole FPGA
resources and other than the embedded processor, the custom
logic parts consume only around 300 µW of dynamic power.

IV. CONCLUSIONS

We propose an embedded reconfigurable architecture for
real-time patient-specific medical diagnosis and accurate
assessment of individuals’ health status through concurrent
processing and synergistic fusion of multiple physiological
parameters. The proposed system is prototyped as a single
integrated device on an FPGA platform. We demonstrate
the efficiency of the system under a multi-parameter cardiac
monitoring scenario, where blood pressure, heart rate, and

TABLE I
PROTOTYPE HARDWARE FOOTPRINT AND POWER CONSUMPTION

Resource RMED MicroBlaze
Type (Reconfig. PEs + Fusion + Ctrl.) (Ctrl/Comm.)
Slices 499 (25.23%) 1188 (66.77%)

Slice Regs 637 (29.92%) 1491 (70.03%)
LUTs 1028 (37.19%) 1615 (58.42%)

Power (mW) 0.30 (0.47%) 133.85 (99.47%)

ECG signals are constantly being analyzed to detect abnor-
malities. The results show improved accuracy with fewer
false alarms and masked artifacts, compared to existing rule-
based monitoring schemes. While the first prototype had
limitations in achieving high accuracy on all the measure-
ments for different patients, primarily as a result of adopting
cost-effective processing algorithms, the tests indicate the
feasibility and validity of the proposed solution.

REFERENCES

[1] Y. Hu and S. Palreddy and W. Tompkins, “A patient-adaptable ECG
beat classifier using a mixture of experts approach,” IEEE Trans.
Biomed. Eng., vol. 44, no. 9, pp. 891–900, Sep. 1997.

[2] Y. Zhang, “Real-time development of patient-specific alarm algorithms
for critical care,” in Proc. EMBC, Aug. 2007, pp. 4351–4354.

[3] E. Shih, et al., “Sensor selection for energy-efficient ambulatory
medical monitoring,” in Proc. MobiSys, Jun. 2009, pp. 347–358.

[4] U. Anliker, et al., “AMON: a wearable multiparameter medical mon-
itoring and alert system,” IEEE Trans. Inf. Technol. Biomed., vol. 8,
no. 4, pp. 415–427, Dec. 2004.

[5] E. Kenneth, et al., “Data fusion of multimodal cardiovascular signals,”
in Proc. EMBC, Sep. 2005, pp. 4689–4692.

[6] L. Tarassenko, et al., “BIOSIGN: Multi-parameter monitoring for early
warning of patient deterioration,” in Proc. MASP, 2005, pp. 71–76.

[7] NATO, “Real-time physiological and psycho-physiological status mon-
itoring,” North Atlantic Treaty Organisation,” TR-HFM-132, Jul. 2010.

[8] C. Mundt, et al., “A multiparameter wearable physiologic monitoring
system for space and terrestrial applications,” IEEE Trans. Inf. Technol.
Biomed., vol. 9, no. 3, pp. 382–391, Sep. 2005.

[9] G. Clifford, et al., “Robust parameter extraction for decision support
using multimodal intensive care data,” Phil. Trans. R. Soc. A, vol. 367,
pp. 411–429, Jan. 2009.

[10] N. Kannathal, et al., “Cardiac health diagnosis using data fusion of car-
diovascular and haemodynamic signals,” Comput. Methods Programs
Biomed., vol. 82, no. 2, pp. 87–96, May 2006.

[11] L. Thoraval, et al., “Data fusion of electrophysiological and haemody-
namic signals for ventricular rhythm tracking,” IEEE Eng. Med. Biol.
Mag., vol. 16, no. 6, pp. 48–55, 1997.

[12] G. B. Moody and R. G. Mark, “A database to support development
and evaluation of intelligent intensive care monitoring,” in Proc. CinC,
1996, pp. 657–660.

[13] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigurable
Computing. Netherlands: Springer, 2007.

[14] “MSP430 Ultra-Low-Power Microcontrollers Brochure,” Texas Instru-
ments, Dallas, TX, SLAB034S, Aug. 2010.

[15] “TMS320C54x DSP reference set,” Texas Instruments, Dallas, TX,
SPRU131G, Mar. 2001.

[16] I. Al Khatib, et al., “Performance analysis and design space exploration
for high-end biomedical applications: challenges and solutions,” in
Proc. of CODES+ISSS, Sep. 2007, pp. 217–226.

[17] D. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proc. of the IEEE, vol. 85, no. 1, pp. 6–23, Jan. 1997.

[18] C. Hug and G. Clifford, “An analysis of the errors in recorded heart
rate and blood pressure in the ICU using a complex set of signal
quality metrics,” in Proc. Computers in Cardiology, Sep. 2007, pp.
641–645.

[19] T. Shen, et al., “Detection and prediction of sudden cardiac death for
personal healthcare,” in Proc. EMBC, Aug. 2007, pp. 2575–2578.

[20] P. Hamilton, “Open source ECG analysis,” in Proc. Computers in
Cardiology, Sep. 2002, pp. 101–104.

[21] C. Chiu, et al., “Using correlation coefficient in ECG waveform for
arrhythmia detection,” Biomed. Eng. Appl. Basis & Comm., vol. 17,
no. 3, pp. 147–152, Jun. 2005.


