
130

A Review of Cognitive Assistants for Healthcare: Trends,

Prospects, and Future Directions

SARAH MASUD PREUM, Department of Computer Science, University of Virginia

SIRAJUM MUNIR, Bosch Research and Technology Center

MEIYI MA, Department of Computer Science, University of Virginia

MOHAMMAD SAMIN YASAR, Department of Electrical and Computer Engineering, University of

Virginia

DAVID J. STONE, Departments of Anesthesiology and Neurosurgery, and the Center for Advanced

Medical Analytics, University of Virginia School of Medicine; MIT Critical Data, Laboratory

for Computational Physiology, Harvard-MIT Health Sciences and Technology, Massachusetts Institute

of Technology

RONALD WILLIAMS and HOMA ALEMZADEH, Department of Electrical and Computer

Engineering, University of Virginia

JOHN A. STANKOVIC, Department of Computer Science, University of Virginia

Healthcare cognitive assistants (HCAs) are intelligent systems or agents that interact with users in a context-
aware and adaptive manner to improve their health outcomes by augmenting their cognitive abilities or
complementing a cognitive impairment. They assist a wide variety of users ranging from patients to their
healthcare providers (e.g., general practitioner, specialist, surgeon) in several situations (e.g., remote patient
monitoring, emergency response, robotic surgery). While HCAs are critical to ensure personalized, scalable,
and efficient healthcare, there exists a knowledge gap in finding the emerging trends, key challenges, design
guidelines, and state-of-the-art technologies suitable for developing HCAs. This survey aims to bridge this
gap for researchers from multiple domains, including but not limited to cyber-physical systems, artificial
intelligence, human-computer interaction, robotics, and smart health. It provides a comprehensive defini-
tion of HCAs and outlines a novel, practical categorization of existing HCAs according to their target user
role and the underlying application goals. This survey summarizes and assorts existing HCAs based on their
characteristic features (i.e., interactive, context-aware, and adaptive) and enabling technological aspects (i.e.,
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sensing, actuation, control, and computation). Finally, it identifies critical research questions and design rec-
ommendations to accelerate the development of the next generation of cognitive assistants for healthcare.

CCS Concepts: • Information systems → Decision support systems; • Human-centered computing

→ Ubiquitous and mobile computing systems and tools; • Computing methodologies → Artificial

intelligence; Machine learning; • Computer systems organization → Embedded and cyber-physical

systems;

Additional Key Words and Phrases: Cognitive assistant, agent based systems for healthcare, smart health, in-
telligent agent, intelligent assistant, virtual assistant, virtual agent, personal assistant, healthcare application
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1 INTRODUCTION

The rapid digitization of healthcare, along with the advancement in ubiquitous computing tech-
nology, has accelerated the development of assistive technologies for healthcare. These assistive
technologies aim to support different user groups in the healthcare domain ranging from patients
to their healthcare providers. Although there are several existing surveys on assistive technologies
for healthcare [4, 35, 42, 51, 61, 66], only a few of them focus on cognitive assistants [35, 51, 66].
Most of the existing surveys focus on reviewing the assistive technologies for healthcare from ap-
plication domains rather than pointing out the key technological challenges and future directions
to provide cognitive assistance in healthcare. Thus, there is a knowledge gap in finding the key
challenges and state-of-the-art technologies suitable for developing capable cognitive assistants
for healthcare.

However, cognitive assistant for healthcare is an emerging topic of current and future research.
It poses several interesting challenges that should be addressed to create a significant impact on
outcomes of individual and population-level health. To bridge this knowledge gap, we provide a
comprehensive survey of the existing research and state-of-the-art healthcare cognitive assistants
(HCAs) in this article. While there are different perspectives of assistive technology for healthcare
ranging from neuroscience to robotics, we specifically focus on existing research on cognitive
assistants for healthcare from the domains of robotics [1, 7, 26, 47, 66, 84, 93, 110, 123, 135, 135,
138, 142], artificial intelligence [33, 109, 110, 117, 124, 129], cyber-physical systems [18, 32, 33, 40,
66, 78, 84, 93, 103, 104, 128, 129], human-computer interaction [32, 33, 35, 40, 66, 93, 103, 104, 110],
and smart and connected health [124, 129, 136, 137].

There is no standard definition of healthcare cognitive assistants (HCAs). Our definition of HCA
is inspired by existing definitions of related systems, including general cognitive assistants, intel-
ligent agents, assistive technology for cognition, and healthcare assistants or agents. The relevant
existing definitions can be found in Section 1 of the online supplemental materials.1 We define
HCAs as follows: A Cognitive Assistant for healthcare is an interactive, contextual, and adap-

tive system that possesses computational capabilities based on a large amount of data or explicit

models of the environment and provides cognition power to improve health outcome by either aug-

menting human intelligence or providing complementary assistance for cognitive impairment.

Here, an improved health outcome refers to any positive outcome for the physical, mental,
and psychological health or well-being of an individual. The improvement can be achieved
by providing cognitive support to (or augmenting the cognitive ability of) anyone involved in

1There, we also compare HCAs with agents used in robotics and reinforcement learning.
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healthcare, i.e., physicians, nurses, patients, in-home caregivers, or emergency responders. Thus,
improving the efficiency of healthcare providers or augmenting their cognitive ability can be
one of the goals of HCAs. Also, computational capabilities can be based on natural language
processing, machine learning, computer vision, and reasoning and inference. The environment
refers to the collection of situations, contexts, resources, and users (e.g., a caregiver, patient, or a
human operator) that the cognitive assistant is used in or interacts with. The main contributions
of this survey are the following:

(1) We provide a comprehensive definition of HCAs and identify the characteristic fea-

tures of HCAs that are suitable for the underlying application domains (Section 3). We
also identify the critical aspects of HCAs that are relevant to multiple domains, including
but not limited to robotics, artificial intelligence, cyber-physical systems, human-

computer interaction, and smart and connected health.
(2) We review and analyze existing research and state-of-arts of HCAs in terms of these

key features and critical cyber-physical components. We create and consolidate tax-

onomies of HCAs according to these features (Section 3) and cyber-physical components
(Section 4).

(3) We also present the application goals/objectives of HCAs in terms of who they assist
(e.g., patients or their care providers) and the types of assistance they provide (e.g., real-
time decision support, or complement a cognitive impairment) (Section 2). We identify
the potential application requirements for each of these application types.

(4) We provide a set of critical challenges, future research directions, and design guide-

lines for the next generation of intelligent or cognitive healthcare assistants with respect
to current and imminent pervasive technologies (Section 5).

A brief outline of the scope of this article and the range of existing HCAs applications

are presented in Figure 1. It shows the different user groups of assistive healthcare applications and
the variety of situations where such applications are used. The defining characteristics (i.e., inter-
active, adaptive, and context-aware) and cyber-physical aspects of HCAs (i.e., sensing, actuation,
and control and computation) are also presented in this figure. We considered a wide array of re-
search on cognitive assistants, including intelligent personal assistants, personal software agents,
assistive robots, virtual assistants, virtual coach for healthcare, personalized assistants, and assis-
tive technology used for healthcare. The goal is to identify relevant existing research even though
different research communities use different terminologies to describe their works. However, only
the works that at least partially satisfy the proposed definition of HCAs mentioned above are in-
cluded in this survey. A list of acronyms used throughout the article is presented in Table 8 in

Section 6.

2 APPLICATIONS OF COGNITIVE ASSISTANT FOR HEALTHCARE

Several existing surveys on healthcare assistants provide taxonomies of healthcare applications
[42, 50] and present a detailed review for the surveyed applications. For instance, they cover cat-
egorization based on the intended users, (i.e., patient-centered, staff-centered, healthcare organi-
zation centered) [51], categorization based on the functionality of applications [50, 51], or cate-
gorization based on the input and output modalities [61]. While such categorizations provide an
overview of healthcare applications targeted at different user roles, they do not highlight the pat-
terns of design requirements and the technical challenges relevant to these applications. Hence,
we categorize HCAs according to user roles, situations, and underlying objectives, as these factors
determine the design requirements of HCAs from different application areas. We also characterize
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Fig. 1. This survey focuses on reviewing healthcare cognitive assistants (HCA). We show the dual user

roles common in healthcare practice: the care recipients (on the left) and the care providers (on the

right). In the blue circle, we list the different situations where HCAs are used, e.g., home healthcare, preven-

tative medicine, and diagnostics. Inside the blue circle, we show the defining features and cyber-physical

components of HCAs. The defining features for an HCA are interactive, context-aware, and adaptive

(referring to Section 3). These features are implemented by different cyber-physical components, in-

cluding sensing, actuation, control, and computation (referring to Section 4). Referring to our proposed

definition of HCAs presented above, the goal of an HCA is to improve health outcome. This is achieved by ei-

ther augmenting the user’s (i.e., a care provider or a care recipient) intelligence or providing complementary

assistance for a cognitive impairment of a patient.

the essential features and cyber-physical systems aspects of the underlying technology of HCAs as
described in Sections 3 and 4. Based on our review, we categorize HCAs in the following classes:

• Patient-facing HCAs to provide pervasive cognitive assistance even in the absence of
professional healthcare providers (refer to Table 1).

• HCAs to provide cognitive assistance to professional healthcare providers for scal-
able, efficient, and effective care delivery (refer to Table 2).

• HCAs used for training patients and professional healthcare providers (refer to
Table 3).

It should be noted that patients and professional healthcare providers mentioned above can
include any of the categories depicted in Figure 1. We list HCAs for training as a separate category,
since it has different application requirements than the other two categories as shown in Table 3.

3 FEATURES OF COGNITIVE ASSISTANT FOR HEALTHCARE

Upon reviewing the current research on cognitive assistants and assistive technologies for health-
care [12, 27, 55, 70, 85], we have identified three key features that enable an HCA to provide
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Table 1. Different Types of Applications That Belong to the Set of Patient-facing HCAs

Application
Type

Potential Application Requirement Examples

Provide decision
support

Natural interaction, explainable, user
context, empathy

A smartphone-based conversational agent for
self-care of heart failure patients [28].

A desktop-based 3D virtual, empathetic agent
for suggesting intervention to change drinking
behavior [67].

Educate patients
Natural interaction, user context,
explainable, multimodal actuation

A smartphone-based 3D conversational virtual
agent for educating individuals with atrial
fibrillation [9].

Provide
diagnostic
support

Natural interaction, user context,
explainable, multimodal sensing

A desktop-based conversational agent for early
dementia detection based on the standard
protocol of questionnaire [2].

A chatbot for checking symptoms and mapping
them to diseases using medical knowledge
bases [34].

Support activities
of daily living
(ADL)

Temporal, spatial, personal, and situational
context, mobility or ubiquitous,
adaptiveness, context-aware interaction,
energy efficiency, embedded processing

A mobile, autonomous robotic assistant for
generating reminders for routine activities,
answering a limited set of questions and
providing guided navigation of the user [93].

Support specific
cognitive
challenges

Personal, situational, and spatial context,
multimodal interface, empathy, embedded
processing

A smartphone-based personalized navigational
guidance system for visually challenged
individuals [3].

Provide
companionship

Personal and situational context, empathy,
emotion, appearance, multimodal
interaction including verbal and nonverbal
interaction, adaptive

An emotive companion robot for the elderly
population that represents a pet cat in terms of
physical appearance [26].

Provide
counseling or
psychotherapy

Personal and situational context, empathy,
emotion, appearance, multimodal
interaction including verbal and nonverbal
interaction, adaptive

A robot-based anxiety management system for
providing personalized therapies to reduce
user’s anxiety level [1].

Provide physical
therapy

Multimodal actuation including haptic
feedback, visualization, adaptive, personal
and situational context

A wearable, physio-therapeutic system for
post-surgery rehabilitation that utilizes haptic
feedback to ensure safe and effective movement
of a target body part or joint based on depth
sensing [104].

Data collection &
self-monitoring

Temporal, spatial, personal, and situational
context, mobility or ubiquitous,
adaptiveness, and energy efficiency

Providing support for (i) self-monitoring of
patients or (ii) collection of longitudinal
behavioral data for disease management or
health risk assessment [61] [44].

Each application type poses some requirements as shown in the second column. For instance, patient-facing HCAs that
provide decision support to patients should support natural interaction, provide explainable intervention, be aware of
user context, and demonstrate empathy. The third column shows some examples of existing systems that belong to
these application types.

cognitive support effectively. They are context-awareness, interactivity, and adaptiveness. In the
following subsections, we review the existing research in terms of each of these features. Specif-
ically, how existing HCAs implement these features, what are the emerging trends, and what are
the potential challenges that are yet to be addressed. It should be noted that often these fea-
tures are intertwined. For instance, to identify the context of a user, the system would need
to interact with users or their environment. The outline of this section is also summarized in
Figure 2.
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Table 3. HCAs Used for Training Patients and Professional Healthcare Providers

Application Type
Potential Application

Requirement
Examples

Training patients:
enhance cognitive
functionalities

Interface to experts and therapists to
configure the games; adaptive to
user’s preference and behavior;
natural interface

A mixed-reality gaming platform that uses a
multi-touch touch- screen tabletop interface for
preserving cognitive functionality of the elderly,
including memory, reasoning, selective attention,
divided attention, and categorization. It supports
single-player and multi- player games and
personalized content for each player [32].

Training patients:
cognitive orthotics

Real-time, autonomous, mobile
perception; longitudinal assessment of
patient’s condition; episodic memory
retrieval

A mixed-reality training platform and storyboard to
help people with dementia and declining memory to
interact through pen gestures, eye tracker, video
camera, microphone, and bio-sensors. It provides real-
time contextual suggestions to perform instrumental
activities of daily living, send reminders on what to do
next and how to do it and relates this to active memory
training [128].

Training first
responders

Realistic simulation of dynamic
environment of large-scale emergency
events; responsive and natural
interaction; assessment mechanism
for performance evaluation [41, 64,
65]

Training emergency responders to find the optimal
resource allocation to complete different tasks in a
distributed search and rescue mission using a
mixed-reality location-based game [106]. The game
simulates real-world disaster response scenarios and
enables human-agent collaboration.

Virtual patients for
physicians

Realistic user interface, facial
expression, emotion; accurate
response to pain and treatment;
reconfigurable to critical use cases

Pediatric Hal, a wireless and tetherless pediatric
patient simulator, simulates lifelike emotions (e.g.,
anger, ongoing pain, crying, anxious, yawning)
through dynamic facial expressions, movement, and
speech. It supports providers of all levels to develop
skills needed to diagnose, communicate, and treat
patients in many clinical areas. The simulator supports
(i) real patient monitoring, including SpO2, EKG,
capnography, defibrillation, and (ii) emergency
interventions, including surgical airway, needle
decompression, and chest tube [121].

Training surgeons:
robotic surgery

Realistic simulation of the patient’s
anatomy, allowing surgeons to
practice on a particular curricula of
tasks; providing evaluation metrics
with respective scores after task
completion

Virtual simulation–based training such as SimNow
[49] and dv- Trainer [76] have provided objective and
scalable methods for evaluating surgeon’s skills and
improving their training. The simulation platforms
allow surgeons to familiarize with the surgical robot
and improve their hand-eye coordination by
maneuvering the manipulators as well as the
endoscopic camera when performing tasks based on a
specified curricula. The physics engine allows for
realistic tool-tissue interaction that ranges from
burning tissues, bleeding, and cutting.

Each of these application types poses some requirements as shown in the second column. The third column shows exam-
ples of existing systems that belong to these application types.

3.1 Interactivity

One of the fundamental features of a CA is to interact with users. Also, the CA can interact with the
physical environment, services, processors, devices, and other CAs. The goal of such an interaction
is to (i) sense the user goal, intent, or requirement, (ii) resolve ambiguity and incompleteness, and
(iii) provide cognitive assistance. An HCA can interact through adaptive multimodal interfaces
and visualization techniques. In this section, we discuss several major aspects of interactivity in
existing HCAs that shape the design of the underlying systems, including the entities that existing
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Fig. 2. Key features of healthcare cognitive assistants (HCAs): (i) interactive, (ii) context-aware, and

(iii) adaptiveness. This figure also summarizes the outline of Section 3.

HCAs interact with, modes of interaction, realisticity of interaction, and nature of the interaction
(i.e., proactive or reactive interaction).

3.1.1 Entity of Interaction. Most HCAs directly interact with only the target user. For instance,
an HCA for robotic surgery interacts with the first assistant of the human surgeon [101]. However,
based on the design requirement, often HCAs can interact with multiple users. For example, RoNA
[47] is a humanoid, mobile robotic nursing assistant for lifting and moving patients and heavy ob-
jects inside a hospital to increase patient and nurse safety and operational efficiency. In addition
to a nurse or physician (i.e., who needs assistance to move a patient), it interacts with a telep-
resence operator through a visual interface where the operator can see and control movements
to ensure safe operation. Similarly, often HCAs for ADL support interaction with the patient and
their primary caregiver [66, 93] or professional healthcare provider [104].

The design issues with multi-user interaction include, but are not limited to, data flow between
multiple users, maintaining the privacy of each user, providing personalized and consistent inter-
ventions/feedback to each user. In addition to human users, a single HCA can interact with other
HCAs or assistive services or devices that operate in the same environment. For example, an HCA
for ADL support can interact with the personal assistant of the corresponding user (e.g., Alexa or
Google Home) for weather updates and schedule the user’s daily routine accordingly. The potential
challenges of such interactions are discussed in Section 5.

3.1.2 Mode of Interaction. Based on our literature review, the modes of interaction for HCAs
can be primarily categorized as: verbal and nonverbal. Verbal mode of interaction includes tex-
tual [5, 77, 137], audio [2, 71, 77], and video [23]. Such interactions may take multiple rounds of
information exchange to understand user intent or requirements, resolve ambiguity, and address
incompleteness. Nonverbal interaction includes interaction through a haptic interface [48, 62,
63, 92, 104], visual interface [33, 47], augmented reality [18, 45, 69, 79], virtual reality [23,

ACM Computing Surveys, Vol. 53, No. 6, Article 130. Publication date: February 2021.



A Review of Cognitive Assistants for Healthcare: Trends, Prospects, and Future Directions 130:9

Table 4. Examples of Modes of Interaction as Found in Existing HCAs: the first

column lists the modes of interaction

Mode of
interaction

Goal/objective Example HCAs

Verbal

Identify the intent and context of the user
through natural language understanding,
context detection, and dialogue
management [2, 23, 77, 85, 108].

Ellie conducts virtual interviews with humans to
automatically assess distress indicators [23]. The
indicators are behaviors associated with
depression, post-traumatic stress disorder, or
anxiety. It uses four classifiers for natural language
understanding, context detection, and response
generation.

Message
Provide reminder, intervention, or alerts
and ask questions through short messages
on a laptop, smartphone or other smart
display interface [66, 71, 83, 117, 128].

EMMA is a smartphone-based virtual personal
assistant [33] that interacts with the user through
recurring ecological momentary assessments for
tracking their level of energy, positivity, and
overall well-being.

A navigational assistant for visually impaired
people provides auditory feedback to alert a user
about the size of the object (obstacle) and the
object’s distance from the user [117].

Tactile and
Kinesthetic

Deliver kinesthetic, or tactile, feedback in a
smart wearable device or sensor-embedded
object [64, 84, 104, 133].

GuideCane [133] supports visually impaired
individuals through haptic feedback to their cane
to indicate their next step while walking (e.g., go
straight, stop). The user interacts through a
thumb-operated joystick to control direction.

Expression and
Emotion

Interact with users by showing emotions or
expressions expressed through a 2D or 3D
virtual avatar or robot [9, 67, 110].

EmIR [110] is an empathetic social robot to provide
cognitive support to the elderly for activities of
daily life. It displays seven emotions to generate an
empathetic response to users: angry, afraid,
disgusted, happy, neutral, sad, and surprised.

The second column contains goals of each mode of interactions. The third column demonstrates an example of the
corresponding mode of interaction as found in existing HCAs. For instance, the first row demonstrates the goals and an
example of verbal interaction. Rows 2–4 show different types of nonverbal interaction. In addition to such individual
modes of interaction, many HCAs support multimodal interaction combining more than one form of verbal or nonverbal
interaction.

111, 112, 134], mixed reality [128], or through sensor embedded objects [32, 132, 133]. Some
HCAs also include olfactory interaction to enhance simulation of a situation or to trigger par-
ticular memory [111]. A lot of HCAs perform multi-modal interaction and often combine both
verbal and nonverbal interactions [9, 23, 47, 83, 110, 111, 134]. Often virtual interaction is carried
out through a 2D or 3D avatar [23, 79]. Examples of different modes of interactions are presented
in Table 4. Additional details about the sensors and actuators used in different modalities of inter-
action are discussed in Section 4. More examples of different modes of interaction are available in
Section 2 of online supplementary materials.

3.1.3 Natural Interaction. It is desired that the HCAs interactions with their intended users is
natural and meaning based. Natural interaction can enhance the user acceptance and usability
of HCAs. Several examples of natural interaction as found in existing HCAs are presented below.

• Complex daily activities: Kognichef [83], a cognitive assistant for complex cooking activi-
ties, provides a hands-free interface for browsing a recipe when the user’s hands are occu-
pied (detected through a built-in camera) to ensure natural and effective interaction. The
user can pause, alter, and skip steps of a recipe and thus always stays in charge.
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• Physiotherapy: KinoHaptics [104], a cognitive assistant for physical therapy and rehabil-
itation, provides haptic feedback when a user performs an unsafe movement during an
in-home physical therapy session. Because haptic feedback requires less attention and focus
from the user than audio or visual feedback, patients can better focus on their physical
therapy. It also provides intuitive feedback by showing a progress bar and a real-time
animation of movement. Thus, it is more engaging and easy-to-interpret as reported by
the users who participated in a user-study to evaluate the usability of KinoHaptics.

• Navigational assistance: An emerging trend among cognitive assistants for visually im-
paired individuals is providing auditory [37, 71, 117] or haptic [63] feedback for naviga-
tion or performing an activity. Another navigational assistant for visual impairment uses a
smartphone application paired with a mobile robot [84]. This mobile navigational assistant
robot provides a natural interface in the smartphone app. Specifically, each sub-window in
a phone screen is mapped to a predefined destination in the corresponding indoor environ-
ment of the user (e.g., cafeteria, rest-room). As a user finds sub-windows on a phone and
then taps them, the app sends a command to the mobile robot to go that destination.

• Enhance cognitive ability through games: A mixed reality (MR)-based HCA for training el-
derly individuals through interactive games [32] provides natural interaction through table-
top MR platform. Tabletop interfaces mainly use touchscreens and multi-touch technolo-
gies. They do not require using a mouse or a touchpad.

However, several existing HCAs lack natural interaction. For example, consider the rehabilita-
tion HCA for post-stroke hand rehabilitation using spatial augmented reality [45] that simulates
common hand movements using AR, including reaching, wrist-tilting, pointing, and grasping [45].
It helps a patient practice these hand movements. However, it is not clear how the assistant re-
sponds if the user makes any hand movement other than the supported movements. It can result
in an interrupted and unsafe user experience. Sainarayanan et al. [117] present a blind navigation
assistant that uses sonification (recognition of an object from sound). However, the user requires
a significant amount of training before using the system to interpret the feedback from the system
that comes through head-mounted gear. Also, the system does not deal with moving objects. Some
HCAs provide snooze option for notification [103]. Such systems should ensure that snooze option
does not annoy users or cause any discomfort.

3.1.4 Proactive or Reactive Interaction. Most of the HCAs are reactive in terms of initiating
the interaction. The proactive assistive services are often referred to as “detect-assistant” and use
a two-step approach [104, 105, 122, 128]. First, the assistant detects the deficit observed in an
abnormal behavior or activity and then it proposes suitable assistance [122]. Here, we present a few
examples of HCAs that support pro-active interaction. Kinohaptics, an HCA for physical therapy
and post-injury rehabilitation, supports proactive interaction. It tracks movement and alerts users
as soon as unsafe movement is detected [104]. In the surgical robot assistant da Vinci, proactive
monitoring is implemented to prevent device malfunctions [105] from affecting the outcome of
safety-critical events. Kognit provides proactive feedback for instrumental activities of daily living
to remind the users of an activity and alert them if they make any mistake while doing an activity
[128]. FindIt provides proactive reminders to its users if they leave behind any critical device,
including phone or keys, while going outside [20]. Another cognitive assistant for monitoring and
detecting early dementia initiates diagnostic conversations with the user proactively [2].

Existing HCAs vary drastically in terms of (i) entities of interaction, (ii) modes of interaction, and
(ii) the nature of the interaction (i.e., proactive or reactive interaction) as discussed above. Although
natural interaction is critical for usability and effectiveness of HCAs [13, 26, 50, 51, 61], several
HCAs overlook this aspect or demonstrate low degree of natural interaction [45, 103, 117]. The
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next generation HCAs should consider this issue from the design level and take an interdisciplinary
approach to address it. We also cover the challenges regarding interaction among multiple HCAs
in Section 5.2. Another relevant area of research emerging from the human-computer interaction
research community is how users (i.e., patients, individuals, caregivers, and professional healthcare
providers) interact with HCAs [13, 32, 33, 35, 40, 77, 93, 104, 110, 127].

3.2 Context-awareness

Context-awareness refers to the feature of a system that allows the system to react differently ac-
cording to different contexts. The system usually has some underlying representation of contexts,
and it learns the context automatically, semi-automatically, or from user feedback. A healthcare
CA should be able to understand, identify, and extract contextual elements from the inter-
action with a user and environment. The set of contexts for HCAs can be categorized into four
classes: temporal, spatial, the user or personal, and situational contexts [86].

HCAs are often designed to be temporally context-aware, i.e., they identify and respond ac-
cording to time of the day, day of the week, or some other predefined time slots. HCAs often
provide location-aware interventions and use spatial context for inferring user state. For HCAs,
the user context includes a user’s physiological, psychological, behavioral, and medical context.
HCAs can provide interventions that are customized to one or more user contexts.

• Physiological context refers to a user’s age, height, weight, and other physiological factors.
• Psychological context refers to a user’s emotion, mood, personality, level of positivity, and

other psychological factors.
• Behavioral context encompasses a user’s behavior, action, predefined priority or prefer-

ences, level of skills, and professional training and certification.2

• Medical context refers to a user’s past medical history, present medical condition, symp-
toms, diagnosis, medications, genetic profile, family history, and similar medical factors.

The situational context includes environmental context, process context, and operational con-
text. Different situations for healthcare are presented in Figure 1. For instance, this includes home
healthcare, remote monitoring, ICU, surgery, telemedicine, or emergency response. In addition to
temporal, spatial, and user contexts, often HCAs are aware of situational context in terms of ongo-
ing process, operations, or pre-defined protocols. Table 5 presents examples of context-awareness
of existing HCAs. Additional review of context-awareness of existing HCAs can be found in Sec-
tion 3 of online supplementary materials.

Identifying and considering a user’s context are essential for HCAs. However, it also raises
concern regarding privacy, security, safety, and confidentiality. Researchers and developers should
address these challenges while designing and developing HCAs.

3.3 Adaptiveness

An adaptive system3 refers to a system that changes its behavior in response to its environment.
A healthcare cognitive assistant should be adaptive so it can accommodate the dynamic behavior

2For professional care providers, including physicians, nurses, and emergency responders.
3It should be noted that context-awareness and adaptiveness are often used interchangeably in some of the existing litera-
ture. However, we distinguish between these features as follows: A system can react differently under the same context to
provide a more adaptive response. To illustrate the point, a context-aware cognitive assistant for ADL support can generate
specific reminders for an activity based on spatial, temporal, or situational context, e.g., suggesting outdoor exercise when
the weather is nice, and the user is physically inactive for a long period [103]. However, the system can be adaptive if it
adapts its reminder based on the user’s response, e.g., when the user declines the reminder to perform outdoor exercise
repeatedly, the system adapts to the user behavior and suggests an alternative exercise.
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Table 5. Examples of Context-awareness of Existing HCAs: The first and second columns contain

the names of different types of contexts and their sub-categories, respectively

Name of
Context

Type of Context Example HCAs

Temporal
Duration

Step Up Life, generates notifications and reminders when the user is
physically inactive for a predefined period. The user can also set “no
reminder” timeslots so the assistant does not generate any exercise
reminder even if there is a long span of inactivity [103].

Time of the day/day
of the week

EMMA, an empathetic virtual assistant for well-being, uses temporal
context (time of the day and the day of the week), in addition to other
contexts, to infer mood [33].

Spatial

Inside/ outside

Gabriel, a Google Glass–based wearable assistant for individuals with
cognitive decline, performs location-aware sensor control [40] and
user-activity recognition. Such as, if the user falls asleep at home, it
turns off the built-in camera to save battery life. It awakens users if
they fall asleep while traveling in public transport.

Exact and relative
location

EMMA uses spatial context to infer user’s mood [33]. It uses the
user’s exact and relative location (e.g., distance from work/home) as
spatial features to predict the user’s mood.

Landmarks
A navigational assistant for people with cognitive impairments uses
augmented reality [43]. Instead of street names/distance, it focuses
on user-friendly routes based on user-known landmarks.

User

Physiological
Quro, a conversational assistant to support symptom checking by
patients, is aware of a subset of user’s physiological and medical
contexts, e.g., gender, age, smoking history, and heart problems [34].

Psychological
EMMA recommends activities according to the user’s mood to
promote the emotional well-being of the user [33].

Behavioral

Ellie, a virtual human interview agent, generates appropriate real-
time nonverbal interaction/behavior based on the conversational
context and user’s facial expression and gestures [23], e.g., facial
expression, eye and head movement, blink, and gaze.

Medical
Babylon, a chatbot to support self-diagnosis for patients, generates its
response according to the user’s medical context [5].

Multiple

ODVIC, a multimodal conversational assistant to deliver evidence-
based interventions for behavior change, provides interventions that
are customized to the user’s profile, past behavior, mood, and recent
conversation [67]. Thus, it combines psychological, physiological, and
behavioral contexts to provide customized interventions.

Situational

Environmental
A navigational assistant that supports path planning is aware of
environmental and spatial context [88].

Process
A surgical assistant monitors the current surgical task of a surgical
procedure [141] and conducts context-specific safety checks.

Operational
CognitiveEMS, a cognitive assistant for emergency response, suggests
interventions to EMS responders that are specific to the context of
standard EMS protocols [126].

For instance, user context can be physiological, psychological, behavioral, medical, or a combination of any of
these user contexts. The third column presents examples of each of these different types of context.

of its environment (including the physical environment or ambiance of the system) and the user’s
goals, needs, requirements, actions, and behaviors. While generating dynamic response is one of
the essential characteristics of adaptive systems, additional characteristics include, but are not lim-
ited to, (i) resolving ambiguity , (ii) tolerating unpredictability, and (iii) learning from experience.
The degree of adaptiveness can vary across systems. Based on our review of existing HCAs, there
are four dimensions of adaptiveness.
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Table 6. Examples of Adaptiveness of Existing HCAs: The first and second columns contain the

dimension and degrees of adaptiveness, respectively

Dimension of
adaptiveness

Degree of adaptiveness Example HCAs

User’s action Velocity of movement

Pearl, a mobile robotic assistant acts as a navigational guide
and ADL assistant for the elderly and adapts its velocity
according to the user’s velocity [93]. Pearl estimates the user’s
velocity and adjusts its speed accordingly.

User’s behavior

Interventions performed
by emergency medical
services (EMS)
responders

CognitiveEMS is a cognitive assistant to provide real-time
decision support to EMS responders. It monitors a patient’s
condition and user’s actions (i.e., the actions performed by an
EMS responder to manage the emergency scene) and suggests
intervention according to EMS protocols [94, 98, 99, 126].

User’s need Errors made by the user

A cognitive assistant to support visually challenged people for
meal preparation provides vocal instructions as the user
proceeds with preparing their meal [36]. It suggests adaptive
interventions that are customized to the types of error the
user most frequently makes (e.g., initiation, planning,
attention, and memory deficit).

Environment
Network failure and
computational resources

Gabriel, a Google Glass-based wearable assistant for ADL
support is adaptive to network failures and unavailability of
remote tiers [40]. It performs computation on server hardware
when the network is available to save the device energy and
increase the service speed. In case of network failure, the
system offloads computation to a fallback device e.g., the
user’s smartphone.

The third column presents example of such adaptiveness. For instance, the first row describes Pearl, a mobile
robotic assistant that adapts its mobility according to the user’s action, i.e., their velocity.

• User’s action: HCAs can be adaptive to users’ actions, i.e., the system monitors the user’s
activities and adjusts intervention suggestions accordingly [8, 18, 83, 93, 94, 98, 99, 126].

• User’s behavior: HCAs are often designed to be adaptive to users’ verbal and nonverbal
behaviors [23, 26, 88, 93].

• User’s need: This refers to the feature of an HCA where the HCA adapts its response to a
user’s (e.g., patients, caregivers) cognitive need, as the user’s condition (e.g., disease, stress
level, psychological state) changes over time [8, 36, 104, 111].

• Environment: HCAs are designed to respond dynamically with the change in the surround-
ing environment. For example, many HCAs developed for navigational assistance are adap-
tive to the surrounding environment [69, 84, 133], e.g., obstacles, visibility, and illumination.

Table 6 demonstrates examples of different dimensions and degrees of adaptiveness as found in
existing HCAs. Additional review of adaptiveness in existing HCAs can be found in Section 4 of
online supplementary materials.

3.4 Limiting Features of Existing HCAs

• Context-aware and adaptive assistance require memory: The assistants need to re-

member past interactions and then respond according to the specific application in the cur-
rent circumstances. Besides, the assistant should be able to distinguish anomalies from a
new behavior pattern to provide accurate and satisfactory cognitive assistance. However,
these two issues are overlooked in most existing HCAs.

• Uncertainty and ambiguity: HCAs should be adaptive to ambiguity and uncertainty, i.e.,
they should be able to “resolve ambiguity and tolerate unpredictability” [85]. They should
define a problem specifically by asking additional questions or utilizing additional input
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Fig. 3. Cyber-physical components of healthcare cognitive assistants (HCAs): (i) sensing, (ii) actuation, and

(iii) control and computation. HCAs sense overall user’s state (e.g., user’s need, behavior, context) and actuate

on the user to perform intervention. Optionally, some HCAs might sense and actuate on the surrounding

environment of the user. The surrounding environment could be smart, e.g., smart home, virtual environment,

or augmented reality–based environment.

sources to resolve ambiguity and incompleteness. Although the spectrum of resolving ambi-
guity and unpredictability can vary across different applications, the majority of the current
HCAs do not address ambiguity and uncertainty.

• Preserving privacy, confidentiality, and security: Most of the HCAs we reviewed over-
look privacy, confidentiality, or security issues. However, one of the most significant differ-
ences of HCA comparing to other cyber-physical systems is the actuator of the system, i.e.,
human beings. As we discussed in previous sections, HCAs are context-aware and adaptive,
which, at the same time, also means that they require more personable information from
humans and take actions on humans. For example, a smart reminder system gives reminders
to patients based on their daily living habits, which also may detect a person’s other activ-
ities; a navigation system for visual impairment people knows where and when they go
most of the time. Protecting this private information from leaking, or malicious usage, is a
significant challenge for the HCAs. Also, malicious attacks can result in adverse or even fa-
tal outcomes for users (error in robotic surgery, wrong or unsafe medication dosage) [139].
Medical devices and HCAs might be hacked and can cause harm or demand ransomware
[29].

4 PHYSICAL AND CYBER COMPONENTS FOR COGNITIVE ASSISTANCE IN

HEALTHCARE

In this section, we review the cyber-physical components (CPS) of HCAs, including (i) sensing
modality (i.e., detection/perception), (ii) actuation (i.e., response and intervention), and (iii) control
and computation. These CPS components are essential for HCAs, as they enable the key features of
HCAs. For instance, the proper sensing and actuation modules enable an HCA to be interactive; or
through sensing and control/computation an HCA can detect and identify different contexts. The
interaction between a user and an HCA through different CPS components is shown in Figure 3.
It also shows that often an HCA can also interact with the user’s surrounding environment (e.g.,
activity recognition in a smart home, sensing and actuating on a user’s virtual environment).
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4.1 Sensing Modality: Detection and Perception

This section presents an overview of the sensing and perception technologies used in existing
HCAs. The sensors can be roughly categorized into six classes:

(1) Primitive sensors: These include, but are not limited to, PIR motion detectors, temperature
sensors, contact sensors, light sensors, and humidity sensors.

(2) Physiological sensors: While the primitive sensors obtain the environmental states, phys-
iological sensors (e.g., pulse oximeter, blood glucose monitor, heart rate sensors, EKG,
blood pressure, and skin conductance sensors) are applied to measure the patients’ physi-
ological states. Physiological sensors that are smaller in size and provide accurate sensing,
wireless communication, and user-friendly interface are more suitable for usage in HCAs.

(3) Acoustic and Ultrasonic Sensors: These are often used for environmental sensing and
obstacle detection to support navigation of visually challenged individuals. In addition,
several conversational HCAs use acoustic sensors (e.g., microphone array or a built-in
microphone in smart devices) to recognize user’s speech to detect emotions or semantics
of their speech.

(4) RGB Camera: These are often used in HCAs for (i) sensing the surrounding of a visually
challenged individual (e.g., obstacles, object detection, people identification, localization)
and support navigational assistance, (ii) detecting nonverbal interaction (e.g., facial ex-
pression, gaze, emotion, empathy), and (iii) fine-grained activity recognition.

(5) RGB-D and Depth sensors: Depth sensors provide a more privacy-preserving approach
for detecting objects and sensing the surroundings of an individual. Thus, they are an
alternative to RGB cameras for navigational assistance, localization, and object detection.
In addition, HCAs often use depth sensors for tracking body gesture and pose to support
real-time monitoring of psycho-motor exercises and physiotherapy sessions.

(6) GPS and Bluetooth low energy (BLE) beacons: These sensors are used in mobile HCAs to
support people or object tracking, localization, and navigational assistance.

Table 7 demonstrates examples of usage of these six classes of sensors in existing HCAs. Addi-
tional examples of different sensing techniques used in existing HCAs are available in Section 5 of
online supplementary materials. We also review usage of multimodal sensing in existing HCAs.

4.1.1 Multimodal Sensing. Several HCAs rely on multimodal sensing to provide multimodal
interaction [83, 93], assist users in multiple cognitive functions [93, 135], act as a robotic surgery
assistant [123, 138], and support augmented reality (AR), virtual reality (VR), or mixed reality
(MR) interfaces [109]. For instance, the relative location and motion of the user’s head needs to
be determined to accurately adjust the projected image or holographs for headset-based VR or AR
applications. It is achieved using an Inertial Measurement Unit (IMU) that combines an accelerom-
eter, a gyroscope, and a magnetometer. By combining the relative positions information from the
three sensors, the user’s head position and movement are accurately tracked.

For navigational assistance. Ribeiro et al. [109] propose an auditory augmented reality system,
where the system integrates acoustic virtual objects into the real-world to assist people with visual
impairment. The goal is to allow the innate ability of individuals of sound source identification and
source separation to determine nearby objects. The subject wears a helmet that is instrumented
with an RGB-camera, an IMU, and a headphone. A 3D gyroscope is used to track the head, and a
3D accelerometer is used to infer the floor plane by estimating the gravity vector. RGB-D stream
is used to infer high-level features of interest (face detection and recognition, floor mapping for
navigation, and plane detection). The detected high-level features are conveyed to the user by
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Table 7. Examples of Six Classes of Sensors as Found in Existing HCAs: the first column lists the classes

of sensors. The second column contains the set of relevant tasks of each class of sensors. The third

column demonstrates an example usage of relevant sensors in existing HCAs. In addition to individual

modes of interaction, many HCAs support multimodal sensing as discussed in Section 4.1.1.

Types of sensors Relevant tasks/usage Example HCA

Primitive
Occupancy detection, event detection,
activity recognition and monitoring [8,
36, 110]

A robot assistant uses environmental sensors such as
CO2, humidity, temperature, propane and butane to
trigger alarms for potentially risky events, e.g.,
leakage of propane gas, high level of CO2 [110].

Physiological
Sense and measure physiological state,
e.g., heart rate, blood pressure, blood
glucose [9, 128, 130, 134]

A smartphone-based conversational assistant to
promote self-care in people with atrial fibrillation
(AF) [9], uses AliveCor Kardia mobile heart rhythm
monitor, a sensor- monitor validated for AF
screening. The device is attach- ed to a smartphone
and transmits data via Bluetooth.

A virtual coach to improve exercise performance is
proposed in Reference [134] that relies on a VR
bike-frame and several physiological sensors to
capture the user’s brain activity and other vitals
while using the bike. It uses Electroencephalogram to
capture brain activity. It also captures heart rate,
respiration rate, bike pedal rate, and power exerted
by the user on the bike.

Acoustic and
ultrasound

Speech recognition [9, 23, 83, 110, 111],
obstacle detection for blind navigation
[95, 125, 133], surrounding environment
sensing [54]

GuideCane equips a cane with ultrasonic sensors for
obstacle detection and to help visually challenged
people to go around the obstacles [133].

RGB camera
Navigation [69, 84, 117], AD support
[18, 75, 135], and nonverbal interaction
[20, 110]

A mobile robot for visually challenged people uses
on- board camera to navigate by tracking pre-
deployed markers (or stickers) on a floor [84].

A robot is equipped with a camera to capture facial
images that are used for people identification and
emotion classification [110].

RGB-D and depth
sensors

Gesture and pose detection for psycho-
motor exercise and physiotherapy [11,
16, 17, 39, 57, 60, 79]

A cognitive assistant for remote physiotherapy
monitors the patient’s exercise session through
Kinect [104] at home. It keeps track of movements of
selected joints to provide haptic feedback through
the patient’s armband.

GPS
Navigation, tracking, and localization
[3, 30, 71, 88, 103, 118]

Step Up Life, uses smartphone’s GPS sensor, CELL
ID, and Wi-Fi details for tracking user’s location
[103]. It tracks a user’s activities using the phone’s
accelerometer and magnetometer to generate
exercise reminders.

using pre-recorded wave files, a text to speech synthesizer after spatializing each sound. Lee et al.
[63] mount an RGB-D sensor and IMU sensor into a pair of glasses instead of mounting them above
a helmet [109] to build a navigational assistant. A smartphone is used to specify the destination.

Supporting cognitive decline. Vorobieva et al. develop a robotic system to assist people who are
losing their autonomy, e.g., disabled, elderly [135]. The system has a gripper with a stereo camera
(for visual servoing or vision-based robot control), pressure sensors, and optical barrier to detect
when an object is in the gripper. The user can request the robot to find an object from a predefined
list of objects. The robot then navigates through the environment to pick up the object and bring
it to the user. The goal of the system is to stimulate the cognitive state of the user by playing
games.
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Supporting multiple functionalities and complex activities. Pollack et al. develop a robotic as-
sistant for cognitive orthotic functions (i.e., providing context-aware and adaptive reminders for
activities of daily living) and safe navigation for the elderly [66, 93]. The system utilizes SICK laser
range finders and sonar sensors for navigation, microphones for user’s speech recognition, and
touchscreen display to detect user needs. It utilizes a camera data stream for face detection, activ-
ity recognition, and object tracking and detection for navigation support. It deploys multimodal
sensing for navigation by combining sensor data streams corresponding to user localization, object
detection, and tracking. KogniChef [83] is a cognitive cooking assistant for preparing a meal. It
uses a Kinect RGB-D sensor and a thermal camera to perform object detection, tracking, and grasp
detection. A scale is used in addition to cameras to estimate fill-level for pouring ingredients. A
microphone array is used for speech recognition, and a speaker is used to provide feedback.

For robotic surgery. Shademan et al. present “Smart Tissue Autonomous Robot (STAR)” for au-
tomating soft tissue surgical tasks and providing a collaborative platform for decision-making and
execution of surgical tasks to surgeons [123]. The STAR system utilizes 3D plenoptic vision, near-
infrared fluorescent (NIRF) imaging, sub-millimeter positioning, actuated surgical tools, and force
sensing to construct and execute surgical tasks. The combination of “NIRF technology and 3D
quantitative plenoptic imaging” addresses the problems of occlusion and target tissue recognition
by observing “luminescent NIRF markers” [123].

4.2 Actuation Modality: Response and Interventions

Based on the type of tasks digital assistants perform, they can be categorized into three classes [70]:
(i) personal assistant or butler that performs a task on behalf of the user, (ii) cognitive orthotic that
provides adaptive and contextual feedback and reminders to people with cognitive impairment or
decline, and (iii) mentor or coach. Based on our review, we found that most of the current HCAs
mostly fall in the second category. However, this categorization does not consider the set of HCAs
that enhances cognitive functionalities (e.g., HCAs for training healthcare providers or providing
decision support to them). So, instead of following the taxonomy mentioned above, we present the
different modalities of actuation in existing HCAs in this section.

4.2.1 Visual. A dashboard or display-based system is one of the most common forms of ac-
tuation and often provides visual guidance to users to perform a task properly. Pearl utilizes a
touch-sensitive graphical display for ADL reminder and navigational instructions [93]. KogniChef
[93], an ADL assistant specifically designed for complex cooking tasks, uses a display to inform a
user about the current state of cooking through structured visual information to reduce cognitive
load. A physical rehabilitation HCA provides visual feedback on a user’s specific physical move-
ment during a physiotherapy session [104] to enable the user to visualize their movements. The
STAR system [123] provides suture automation software that displays a geometrically optimized
suture plan in real-time. If the placement of the suturing tool is problematic, the surgeon has the
option of intervening and making adjustments.

Visual actuation often consists of contextual and adaptive textual interventions. EmIR [110], a
cognitive assistant for emotional well-being uses textual messages to provide contextual reminders
and recommendations and persuade the users in activities to lift their emotional state. Another
cognitive orthotic HCA developed for meal preparation alerts the user when a missing or wrong
step is detected [8]. It sends the message with instructions using not only text, but also figures to
better explain the missing/wrong cooking steps to users.

4.2.2 Audio. Conversational HCAs often implement verbal communication through audio [2,
9, 23, 83, 110, 111] with an underlying text-to-speech conversion and transcription module, e.g.,
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Google speech, IBM, or CMU sphinx. In addition to such verbal communication, audio mode is
often used for nonverbal interaction [3, 69, 88, 109, 118] and cognitive orthotics [83, 93]. The
most common form of such actuation is found in navigational assistants where the navigation
system gives the user step-by-step instructions using earphones [3, 69, 88, 118]. As an example of
cognitive orthotics, Pearl [93] utilizes built-in speakers for speech synthesis to answer user queries
and provide ADL reminders.

4.2.3 Haptic. Haptic feedback can be kinesthetic or tactile or a combination of both. Kines-
thetic feedback refers to the haptic sensation that is felt by the muscles, joints, or tendons. Usually,
kinesthetic actuation includes weight and stretch. However, tactile actuation refers to the haptic
sensation felt by the surface of our body and includes vibration, pressure, and texture. Most of the
HCAs reviewed in this article that use haptic feedback use tactile feedback. Haptic feedback can
address the issue of accessibility to some extent, since it can be more desired than audio and visual
feedback for people with declining auditory and visual perception, respectively. It is also useful for
implementing a hands-free interface, since the user may be engaged in some activity (e.g., physical
exercise or therapy) and cannot hold any device.

Khademi et al. develop an augmented reality rehabilitation system that uses haptic feedback to
enable patients with stroke to practice their hand and arm movements without the presence of a
physical therapist [56]. Phamduy et al. develop a novel belt to provide tactile stimulation in the
abdomen for situational awareness and obstacle avoidance by integrating micro fiber composites
into the belt [92]. Nguyen et al. build a way-finding system, which is deployed on a mobile robot
that a user would follow to navigate [84]. The user would use a smartphone to select a destina-
tion from a predefined set of destinations. While a user follows the robot, the feedback from the
robot is encoded as tactile vibrations of the smartphone to notify the user. There are four types
of vibrations to suggest “turn left,” “turn right,” “go straight,” and “stop.” The navigational assis-
tants presented in References [62, 63] use tactile feedback through a vest. There are four vibration
motors integrated into a vest that is controlled wirelessly to provide four navigation cues: straight
(“no tactile sensors on”), stop and scan (“all tactile sensors on”), turn left (“top-left sensor on”), and
turn right (“top-right sensor on”). The authors argue that the vest-type interface would reduce the
cognitive burden of the user compared to audio-based navigation feedback.

KinoHaptics, an HCA for self-care and post-surgery rehabilitation, monitors the patient’s phys-
iotherapy session and provides haptic feedback through the patient’s armband [104] in real-time.
The vibro-haptic feedback is generated to make sure the user does not overdo or under-perform
an exercise suggested for physiotherapy. The armband contains an array of vibration motors, and
it connects to the feedback-generating server machine via Bluetooth connection. Step Up Life
uses haptic feedback for cognitive orthotics, specifically for physical activity and movement. If
it observes prolonged inactivity of a user, it notifies the user along with an exercise suggestion
by generating haptic vibrations using the cell phone vibration motor. The duration of the haptic
vibration depends on the number of times the user has snoozed a notification [103].

4.2.4 Multimodal Actuation. Several existing HCAs perform multimodal actuation to support
multiple cognitive functionalities and to provide natural, realistic interaction, often through AR,
VR, or MR interface.

Weede et al. presented a surgical robotic assistant that provides two interventions:
(i) knowledge-based camera guidance that provides an optimal view of the surgical workspace
and (ii) a port and setup planning to provide an optimal position to insert the endoscope and
the two end-effectors into the patient’s body [138]. Rizzo et al. developed a virtual assistant
for psychotherapy that simulates traumatic events based on a patient’s description [111]. It pro-
vides general navigation for driving in the simulated scenario using a standard gamepad. It also
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Fig. 4. An emerging trend in HCAs is using AR, VR, and MR, as demonstrated in the HCAs above. (A) Shows

a VR-based exposure therapy platform to simulate trauma-inducing events based on narration of people suf-

fering from combat-related PTSD [111]. It supports simulating general navigation for driving, dismounted

foot patrol, holding mock M4 gun, and generating audio, vibrotactile, and olfactory stimuli. (B) Presents a

use case of medication management and tracking in Kognit, an MR-based assistant for elderly individuals

[128]. (C) Shows ElderGames, an MR-based game to improve cognitive functions of elderly individuals [32]. It

provides natural interaction through multi-touch technology where multiple players can play together using

pens on the table top. Here, real objects (i.e., pens) are used to interact with virtual ones (i.e., virtual objects

displayed on the touch-sensitive and interactive table top). (D) Demonstrates configurable visualization of

a stereo endoscopy in ARssist [101], an HCA for real-time cognitive support for a first assistant (FA) in a

robotic surgery: In the left figure, the endoscopy is shown in a virtual display to enable the FA to visualize

both the surgical field and the endoscopy with minimal head rotation. In the right figure, the endoscopy

and the instruments are rendered inside the patient’s body. This enables the FA to intuitively operate in-

struments into the endoscopic field-of-view, even with an inconvenient docking configuration of the robotic

arms. (E) Presents the “da Vinci Si surgeon’s console” and the “Skills Simulator backpack” that uses VR for

training and evaluating robot-assisted surgery skills [38]. [AR: Augmented Reality, VR: Virtual Reality, MR:

Mixed Reality]

provides the option to simulate the context of dismounted foot patrol and a user-held mock M4
gun through a thumb mouse attachment. It provides audio, vibrotactile, and olfactory stimuli to
users for realistic simulation of the traumatic event. It is shown in Figure 4(A).

ARCoach [18] is a task-reminder system to assist individuals with cognitive impairments that
provides cues to complete tasks, detects incorrect steps on-the-fly, and helps to correct a task.
Unlike other approaches that require users to match picture cues with reality, ARCoach overlays
artificial information on real-world images captured through a webcam. The overlaid information
can be in texts, sounds, pictures, or a combination of these. CARA [69] is a cognitive augmented
reality assistant for the blind. Using head-mounted Microsoft HoloLens, CARA uses onboard video
and infrared sensors to construct a 3D map of the surrounding space. Then each object in the scene
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generates a voice that comes from the location of the object. As the object gets closer to the user,
the voice’s pitch increases. It helps blind subjects to avoid obstacles, perform navigation, scene
interpretation, and “formation and recall of spatial memories.”

Parsons et al. [91] use VR to train people with autistic spectrum disorders to enhance their social
skills. The key idea is to provide a safe virtual environment to practice social events by performing
role-play in different contexts. Kognit aims to help dementia patients by leveraging mixed reality
[128]. The authors describe their approach as therapeutic, which enhances the cognitive abilities of
dementia patients. Kognit produces new episodic memory visualizations by allowing physical and
virtual objects to co-exist and interact with each other. An example use case is shown in Figure 4(B),
where mixed reality is used to monitor the medication-taking behavior of an elderly person.

4.3 Control and Computation

In this section, we review different aspects of the control and computation component of existing
HCAs. It should be noted that some computational models relevant to sensing or perception and
actuation have already been discussed in the previous sections and subsections. Here, we mention
additional interesting insights regarding control and computational models.

4.3.1 Underlying Control and Computational Model.
Data-driven Model. HCAs often use off-the-shelf trained machine learning models for different

sub-tasks. To name a few, navigational assistants require object detection and scene interpretation
[7, 20, 120]; conversational assistants require detecting facial expression [14, 110] and emotion
[110], understanding natural language [2, 23, 28, 112] and dialogue management [2, 9, 23]; compan-
ion robots and ADL support HCAs require activity recognition [93] and person identification [110].

Most of the existing HCAs use off-the-shelf trained machine learning models for this. For in-
stance, Jaime et al. [110] use a web service for person identification and emotion recognition from
images due to the limited computation capacity of the robot assistant. The robot assistant captures
facial images and sends the images to the web service where all images are processed, and then
results are returned to the robot in real-time. A cognitive orthotic HCA for cooking [8] uses sepa-
rate models for different underlying components, including activity recognition, human-machine
interaction events, behavior or activity errors detection, errors characterization, and diagnosis
regulation. Then the outputs from these models are integrated to monitor, detect, and assist in
cooking. Another approach is developing application-specific data-driven models separately and
integrating them into the HCAs. Consider Pearl [93], an HCA for the elderly that provides real-
time navigational guidance and adaptive, context-aware reminders for ADL. Pearl uses a quan-
titative temporal Bayes net for activity modeling and inference. It adopts a hierarchical variant
of a “partially observable Markov decision process” (POMDP) as the control architecture to miti-
gate the significant level of noise in the assistant’s perception, which is originated from the laser
range-finder sensors and user input from microphone and touchscreen.

The models are often developed and adapted on-the-fly through user training and longitudinal
usage, resulting in personalized models. NavCog [3] uses reinforcement learning to generate a
step-by-step instruction personalized to the mobility skill of a user. It builds a user-specific behav-
ior model to ensure successful navigation. However, when data is not enough for a new user, it
uses transfer learning techniques to apply other users’ data to the new model. Mattos et al. de-
velop a speaker-independent, language-independent model to assist hearing impairment patients
to read lips using Generative Adversarial Networks (GANs) to learn mouth pictures [74]. It uses
synthetic 3D models for training, and videos collected from real subjects for testing.

Knowledge-driven Model. Often HCAs use a knowledge-driven approach for control and com-
putation. In CognitiveEMS [126], one of the proposed approaches for real-time decision support
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through EMS protocol-specific intervention suggestion is modeling the EMS protocols using a Be-
havior Tree. It is a computational model for knowledge representation that uses a dynamic data
structure that adapts to an ongoing process or incoming information flow. In KinoHaptics [104] a
patient’s physiotherapist develops a specific personalized exercise program. The exercise program
contains critical information, including what should be the angle of elevation of a joint during
physiotherapy sessions, how frequently it should be moved, and what should be the duration of
an exercise session. This exercise configuration file is loaded on a local desktop or laptop at the
patient’s home. Then the Kinect-based monitoring system (that is integrated with the local ma-
chine) monitors the user’s movement during a physiotherapy session and generates vibro-haptic
feedback to notify the user if they are overdoing or under-performing a movement that involves
the selected joint [104]. Weede et al. present a prototype of a cognitive system for minimally inva-
sive surgery that leverages knowledge acquired on the workflow of surgical interventions through
collecting trajectories of different surgical contexts [138]. Their implementation includes several
control modes that can be called upon, depending on the surgical context, with the modes being
teleoperation, hands-on mode, and autonomic camera guidance.

Knowledge can also be presented as a rule base. Emma [33], a virtual assistant to promote psy-
chological and mental wellness, utilizes a rule base to generate (i) predefined response and (ii) in-
tervention suggestions on emotionally appropriate micro-activities based on frequent ecological
momentary assessment (EMA) survey collected from a user. The rule base is generated by pro-
fessional care providers. Another virtual assistant for mental health [110] presents arguments to
persuade users for an intervention based on analogy, popular practice, or expert opinion.

Control models are often developed based on the application requirement, safety requirement,
and other constraints and thus embed domain knowledge. A humanoid, mobile robotic nursing
assistant for lifting and moving patients inside a hospital achieves semi-autonomous and au-
tonomous functionalities through a behavior-driven control model [47]. The control model is ad-
justed to ensure user safety (both patients and nurses) and operational efficiency.

Hybrid Model. HCAs that provide treatment-related suggestions often combine domain knowl-
edge models with data-driven approaches. IBM Watson for oncology [137] combines both data-
driven and knowledge-driven models to provide customized decision support to oncologists for
diagnosis and treatment plan selection. Specifically, it provides an interactive, context-aware in-
terface for information visualization and summarization using natural language inference and
knowledge integration. Upon logging into the system, oncologists can view and browse through
the relevant medical information for each of their patients, including but not limited to, medical
history, family history, test results, suggested treatment options, and knowledge curated from re-
cent and historical cases similar to the current patient. It generates treatment suggestions based on
a model trained on prior data collected from Memorial Sloan Kettering Hospital oncology records.
In addition, it combines knowledge extracted from over 300 medical journals and 200 textbooks
and rationales from leading oncologists. It also shows relevant statistics from the curated litera-
ture for different treatment options. In cognitiveEMS [94, 98, 126] data-driven language models
and distributional semantic models are used to extract safety-critical concepts that are relevant
to standard emergency medical service (EMS) protocols in real-time from the spoken language
collected at an emergency scene. In addition to that, domain knowledge from standard EMS pro-
tocols are integrated using behavior tree data structure to provide effective and safe intervention
suggestions to the responders.

In an empathetic virtual assistant for changing drinking behavior of individuals, real-time data-
driven models are combined with behavioral models from psychology and other domains [67]. The
system is controlled based on (i) the perception of user state sensed from real-time text and video
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datastreamsand (ii) established psychometric instruments. Empathic reactions with intervention
suggestions are generated based on predefined rule-base that captures the domain knowledge of
experts. For instance, the behavior change assistant decides its facial expression, head movements,
eyebrow expressions, and complex verbal reflections based on a user’s perceived state and knowl-
edge of predefined behavior protocols.

4.3.2 Device-level Computing. By following the four-tier computing model [119], where Tier-1
represents the cloud (e.g., data centers), Tier-2 represents cloudlets (e.g., high-end laptops, desktop
PCs), Tier-3 represents embedded devices (e.g., smartphones, wearables), and Tier-4 represents
energy-harvesting devices (e.g., RFID tags), a trend in existing HCAs is the usage of Tier-2 and
Tier-3 level local computing to provide pervasive cognitive assistance to users even with low or
no network connectivity and device constraints. Tian et al. present a navigational assistant for
visually challenged people that requires users to carry a mini laptop that performs the entire com-
putation locally [132]. It processes RGB-D sensor data mounted in the belt of a user to detect
staircases and pedestrian crosswalks by using a Hough transformation and an SVM classifier to
enable blind navigation. Similarly, local processing is performed [63, 117] in real-time, where a
user needs to carry an entire computational unit. Specifically, a blind individual needs to carry
headgear containing a digital video camera and wear a smart vest that contains the processing
equipment, a Micro box PC-300 chassis [117]. The vest also contains rechargeable batteries.

In addition to navigational assistants, device-level computing (Tier-2, Tier-3) is also preferred in
other pervasive, mobile HCAs, especially in HCAs for cognitive orthotics. A visually impaired user
needs to follow a moving robot for indoor navigation that performs computation locally [84]. There
is an offline phase to map the environment and travel routes. Neumann et al. propose KogniChef, a
cognitive cooking assistant, where all the computations are performed on a “6-core Linux machine”
[83]. González-Ortega et al. propose a real-time system that runs locally on a PC with an attached
Kinect and asks the user sitting in front of it to perform different psychomotor exercises to assess
neuropsychiatric disorders and mental illnesses [39].

Pollack et al. propose Pearl, a cognitive assistant for navigational guidance and adaptive re-
minders for ADL, that contains a differential drive system and two onboard Pentium PCs as the
backend server [93]. It also uses Wi-Fi to access the internet for responding to user’s query regard-
ing weather and date/time. However, Pearl can provide support for the core cognitive functions
(i.e., navigational guidance and adaptive ADL reminder) without the Wi-Fi connection. Its head
unit is designed to mimic the appearance of a humanoid, which makes the visual interaction more
natural.

4.3.3 Hybrid Computing. Some HCAs support both cloud and device-level computing (Tier-3)
and adapt their performance according to the availability of computational and communication
resources. A Google Glass–based cognitive assistant gracefully degrades services in offline set-
tings [40]. There is a tradeoff between battery life and response time. It offloads computation to
a cloud server when possible, since the wearable CA devices are resource-poor in terms of life-
time and computational capacity when compared to server-side devices. NavCog, a navigational
assistant, applies a hybrid computing strategy using smartphones and cloud [118]. The system
localizes users using the phone and sends the information to the map server on the cloud, where
the server calculates the route combing the map information. It verbally interacts with the user
through a conversational system. The conversational system combines: (1) a basic conversation
script and (2) a recommendation engine. Vorobieva et al. present a robotic assistant for automatic
object manipulation and object grasping using vision-based robot control [135]. In this case, ob-
ject recognition is performed using a client-server architecture. For searching an object, the client
sends an image to the network server. Then the server analyzes it and responds to the client.
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They use a “SOAP-XML based communication protocol” [52] for this purpose. The robotic system
performs local computation to determine how to pick up the item selected by the user using its
gripper.

4.4 Emerging Trends and Limitations in HCAs: A Cyber-physical Systems Perspective

• The capacity of existing conversational HCAs for understanding verbal communication and
generating accurate and personalized dialogue is often limited [23]. Advanced techniques
for these tasks should be integrated into future HCAs for more adaptive, context-aware,
realistic, and accurate interaction.

• Some emerging trends among recent HCAs are providing multimodal interaction, offering
cognitive assistance for multiple functionalities, and using AR, VR, or MR interfaces. Some
example HCAs that use AR, VR, or MR are shown in Figure 4. However, the current version
of such HCAs still lack meaningful, frequent interactions with users. Also, they are more
vulnerable to attacks that threaten user privacy, security, and safety [77].

• Several HCAs provide suggestions and alerts to professional healthcare providers, includ-
ing physicians, surgeons, and emergency responders. Qualitative surveys often show that
automatic alerts often result in alert fatigue and increased cognitive burden by sending irrel-
evant alerts. However, alerts can also prevent severe errors and problems. So, alerts should
be context-aware, adaptive, and presented according to a hierarchy of severity [53].

• Most HCAs that provide haptic feedback use tactile or vibrotactile feedback. However, some
HCAs might benefit from kinesthetic feedback for more natural and realistic actuation, such
as the HCAs that track hand motions or focus on physical rehabilitation [45, 128].

• HCAs need be trained with knowledge of patient profiles, populations, guidelines, care
pathways, or workflows used by caregivers for context-aware and personalized interven-
tions. Modeling, encoding, and representation of such knowledge (e.g., clinical protocol
guidelines and care pathways) are also critical.

5 DESIGN RECOMMENDATIONS AND FUTURE DIRECTIONS FOR

INTELLIGENT/COGNITIVE ASSISTANTS IN HEALTHCARE

In this section, we discuss overall design recommendations and future directions for intelli-
gent/cognitive healthcare assistants with respect to current and imminent technologies.

5.1 Enhancing the Cognitive Ability of HCAs

Enhancing cognitive ability is a core challenge for the future generation of HCAs. The ultimate goal
of cognitive assistants is to mimic human cognition, which is not yet understood properly. How-
ever, cognitive processes can be categorized into different classes, and cognitive assistants are de-
signed to mimic these processes. These include “attention, perception, memory, language, learning,
and higher reasoning” [113]. The success of deep learning and reinforcement learning approaches
in computer vision and speech processing has enabled current HCAs to provide reasonable per-
formance for low-level cognitive processes such as attention (i.e., “process for selecting an object
on which to concentrate”), perception (e.g., activity recognition, object recognition), and memory
(i.e., process for storing, finding, and accessing knowledge). However, there is still a large gap in
cognitive assistants when dealing with more complex cognitive processes, as presented below.

Language: This refers to the processes for understanding and communicating through natural
and meaning-based language. Even the state-of-the-art assistive technologies (i.e., Alexa, Google
personal assistant) often fail to understand user interaction, resolve ambiguity, and deal

with uncertainty. The recent focus on natural language understanding (NLU) and natural
language generation (NLG)–related research can help to reduce this gap. Some specific use
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cases include, (i) communicating with users based on their health education level such as using
easy-to-understand, jargon-free language, and layman’s terms while interacting with patients
with low health literacy, (ii) choosing level of details for interaction in a context-aware

manner so users are satisfied with their query and not overwhelmed by the information load, and
(iii) learning user preferences explicitly and implicitly from their interaction with the system.

Learning: This refers to the “process for synthesizing new knowledge and connecting new infor-

mation and experiences with existing knowledge” [113]. Since the underlying computational models
used in HCAs have static representation, the process of learning is often bound by the representa-
tion. Dynamic, non-linear knowledge representation to link abstract concepts to concrete repre-
sentations can be one of the many potential directions to accelerate the learning process of next-
generation HCAs. Another major challenge is learning under uncertainty. Recent research points
out that in machine learning–based approaches, uncertainty can come from data (e.g., noisy
data, mis-measurement) and model (e.g., model structure and parameters) [31]. Additional uncer-
tainty can be introduced in the context of HCAs from human error, system malfunctions, and

unpredictable or anomalous human behavior [46, 100]. So, the HCA design principle should
accommodate such uncertainty. Some additional issues are personalized learning, distinguish-

ing emerging patterns from anomalies or outliers, learning in real-time, un-learning the

wrong or undesired patterns, and increasing situational awareness.
Higher Reasoning: This encompasses any process that involves “reflective cognition such as

problem-solving, planning, reasoning, decision-making” [113]. While the concept of autonomous
HCAs that perform critical interventions on their own is a far-fetched idea, HCAs are being used
at an increased rate to provide decision support at different steps of healthcare systems as described
in Section 2. That demands future research to augment the reasoning capabilities of HCAs.

5.2 Interaction of Pervasive Assistants

With the increasing popularity and diversity of HCAs, a single user is highly likely to use multiple
HCAs simultaneously. Thus, multiple HCAs are often likely to interact with each other. Besides,
they can also interact with other pervasive assistive technologies and services that the users and
their co-residents (i.e., patients and their caregiver or family members, elderly patients living in an
assistive facility) use. Since HCAs are developed and deployed independently, often such interac-
tions can result in unwarranted and unexpected situations as illustrated below. We identify this is
a potential challenge and research direction for future assistive technologies.4 HCAs and assistive
services interact at different stages, including sensing, actuation, and control and computational
modality. Thus, those interactions result in unique challenges, as outlined below.

Sensing: Multiple HCAs can share data with each other for improved performance and effi-
ciency. For example, an HCA for navigation may detect issues with the motor movement of the
user and inform another HCA to select specific lessons of psychomotor exercises to alleviate neu-
ropsychiatric disorder and mental illness of the user. In another example, an in-home HCA may
detect agitation, stress, or irritation of the user and inform the HCA for navigation to avoid spe-
cific routes or play specific music to reduce stress. In another example, an overweight user is using
an HCA to adjust his daily meal and exercise pattern for complying with the guideline suggested
by his physician. Now, this HCA can interact with his existing HCA dedicated to ADL support to
access current data (i.e., mealtime, duration, exercise duration). While such interaction should be
supported by HCAs to decrease redundant user interaction (e.g., both HCAs asking a user about

4It should be noted that this interaction is different from the interaction in a multi-agent system [50, 51], since such systems
are designed and developed with the multi-agent context in mind. It is not the case when multiple HCAs and other assistive
services run simultaneously.
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their mealtime and duration might be annoying for the user), the data sharing should also preserve
user privacy and confidentiality. This also illustrates the tradeoff between data re-usability across
applications and potential privacy vulnerability. This issue could be more severe for platforms
like Alexa. As of now, Alexa skill supports about 1,700 health and fitness apps. In such a platform
where each app is typically developed by different vendors, allowing data flow among multiple
apps begs the question of how these data are shared and stored. Users should be aware of the
terms and conditions of the applications and their permission.

Actuation: When multiple assistants (including HCAs) perform interventions, they may re-
sult in conflicts [72, 95, 96]. For example, an HCA monitoring the mood of a depression patient
suggests the user take a walk outside to boost their mood while another HCA monitoring his
ADL reminds him to perform a pre-scheduled task. While some conflicts can be resolved easily
by the user and might have non-severe consequences, other conflicts might have serious effects
on user health and overall wellness. For example, an HCA for one disease suggesting a food (e.g.,
grapefruit) or medicine to a patient suffering from multi-morbidity that interferes with his other
diseases or medications (i.e., Lipitor or similar medications used for treating high cholesterol) and
cause adverse side effects.

Another issue regarding the actuation modality is coordinating the interventions among
multiple relevant HCAs. Consider a first responder wearing a smart vest that provides haptic feed-
back to alert about the condition of one or more patients in an emergency scene (e.g., sudden drop
or rise in blood pressure or other vitals). If there are too many haptic feedbacks in his vest, it could
be confusing and overwhelming for him. A similar issue may arise with navigational HCAs that
provide haptic feedback to visually challenged individuals [84]. Some design challenges relevant to
this issue include determining the effective interface and frequency and duration of actuation.
The interventions from multiple HCAs should also be coordinated in real-time to make sure they
are adaptive to the dynamic state of the user, e.g., prognosis of disease, change in behavior or
skill level. For example, an HCA suggesting an intervention for a symptom a patient had recently,
which is already being treated by another HCA or their care provider.

Control and Computation: Since multiple assistive services (including HCAs) can share re-
sources, they can often interact in control and computational modality. For example, regular assis-
tive apps and apps for assisting cognitive health running in an Alexa device can often run on the
local device and perform local computing. Potential issues regarding computational resource

distribution and priority of applications can stem from such situations.
Some design recommendations to address such interaction among multiple pervasive assistants

(including HCAs) are as follows: (i) Maintaining a central system similar to home IoT control
system for resource management and communication with the HCAs that interact with each other
in one or more modalities. (ii) Developing conflict detection, degree, or severity detection of
potential conflicts and conflict resolution systems for health applications [73, 80, 81, 95, 96].
(iii) Developing synergistic applications to exploit and transfer information and knowledge from
one assistive service to another. For instance, an indoor HCA helps a mobile CA by detecting user’s
stress and mood, or an HCA for ADL support tracks a user’s activities of daily living to increase
the user’s adherence to medical treatment.

5.3 Addressing Realism

Unrealistic Assumptions: Often the design of HCAs relies on unrealistic assumptions. For
example, the increasingly popular modes of interaction through AR, VR, or MR often require
the user to wear a head-mounted display, headset, or HoloLens. It may not be realistic for many
applications, including navigational assistance and activities of daily living. Another assumption
is providing repeated and continuous audio suggestions to users for navigational assistance. It
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might annoy users, especially if they are already aware of suggested intervention. Another issue
with navigational assistance is they often overlook the case where the user makes a mistake, e.g.,
the user misses a turn. It is not clear how such systems would resolve such issues. Several HCAs
utilizing RGB cameras or depth sensors overlook lighting and background issues. This might
result in poor performance in real deployment.

Adaptive Interaction of HCAs with Progression of a Disease: With the surge of voice-
based HCAs and CAs, one potential point of failure is the effect of the progression of a disease on
user’s voice. For some diseases and conditions (e.g., throat cancer, alcohol abuse, thyroid disorders),
a user’s voice may change with onset and/or progression of the disease [24]. It can cause an error
in speaker identification, one of the critical parts of a voice-based assistant, unless the assistant is
adaptive to the user’s voice. A similar issue can arise from changes in speech patterns (for voice-
based assistants), facial expression, and gaits (for multimodal interaction-based assistants). So, one
of the design recommendations is to develop patient-facing HCAs that are adaptive to a patient’s
disease prognosis.

Single User Assumption: Most of the HCAs are developed and tested in a single user setting,
which is not often the case. These systems can often fail to recognize desired users correctly and
result in an error. For example, most of the HCAs for ADL support and patient-facing decision
support do not have any user identification mechanism. Thus, they cannot monitor a user’s activ-
ity properly (e.g., cooking assistant may be confused when multiple people cooking at the same
time or a smartwatch-based HCA for ADL support identifying wrong activities of a couple as they
mistakenly switch their smartwatches) or may leak sensitive private information to other family
members (e.g., a diagnostic chatbot revealing sensitive information of one user to another user who
shares the same device). Researchers have been working on these issues, e.g., speaker ID recog-
nition using voice, or daily activity detection with multiple users using individual smartwatches
or smartphones. However, not all the HCAs have sensors such as smartwatches, microphones, or
cameras to recognize speaker ID. So, for the next-generation HCAs, the context of usage (single
user vs. multiple users) should be considered in the design.

Longitudinal, Real-world Testing: Most of the existing HCAs lack longitudinal, real-world
testing and cannot address many realistic situations once they are deployed. For example, NavCogs
[121] is tested in a large shopping mall with over 120 beacons, but it may not be feasible and cost-

effective to deploy so many beacons for an HCA or deploy beacons everywhere in a city for the
purpose of navigation for visually impaired people. Also, as HCAs intervene with patient’s health,
they can adversely affect patient’s health safety. For example, many recent studies report how
machine learning–based diagnostic tools that achieve state-of-the-art accuracy in research exper-
iments often fail when deployed in real-world due to lack of data diversity and other issues [87,
107, 131]. One design recommendation is to develop robust and comprehensive simulation plat-

forms for human physiological functionalities and other health environments, when real-world
testing is prohibitively expensive. Another relevant challenge is to consider fairness, diversity, in-
clusion, and equity for minority groups (e.g., in terms of race, gender, and other aspects) during
design, development, and test phases of HCAs. Especially for data-driven or model-driven HCAs,
the training data should be representative of diverse user groups. This is critical for HCAs that
directly impact health outcomes of an individual.

Real-time Embedded AI Challenges: The recent success of AI in solving challenging prob-
lems in computer vision, NLP, and speech recognition along with the advances in embedded de-
vice technology offers opportunities for developing pervasive and intelligent HCAs powered by
embedded AI. The main challenge is to enable complex computations on resource-constrained em-
bedded devices (with constraints on computing power, memory, battery power, and heat dissipa-
tion) while satisfying real-time requirements (e.g., for user interactions in HCA applications). As a
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result, different research directions are explored to enable real-time AI, e.g., by reducing variance
in the search space, changing the order by which the search space is explored, precomputing, incre-
mental and approximate problem solving, focusing on representation of models that understand
uncertainty and can reason based on recent data, as mentioned by Musliner et al. [82]. Comput-
ing power- and memory-related constraints are especially challenging for perception and control
using computer vision and speech recognition. Low-power hardware accelerators for AI and deep
learning (e.g., Intel Modivius, Google Edge TPU, and Coral toolkit) have shown promising results
in automotive, robotics, and IoT applications. For example, when object detection is performed us-
ing the single-shot multibox detector (SSD) algorithm [68] on MobileNet architecture, it gets only
0.5 frames per second (FPS) when running on a Raspberry Pi 3 CPU and 3.5 FPS when Intel Mo-
vidius neural compute stick was used in addition to Raspberry PI 3 CPU [89]. While 3.5 FPS may
be too low for automotive applications, it may be adequate for some HCAs. However, such solu-
tions need to be a lot more lightweight to run continuously on battery power and enable portable
HCA.

5.4 Domain Adaptation of Existing Technology for HCAs

With the recent advancement of machine learning in different domains (i.e., computer vision,
speech processing, and natural language processing) general assistive technologies often achieve
impressive performance for perception and actuation, e.g., identifying user’s face, object, expres-
sion, tracking user’s mood through their voice and facial expression, speech recognition, and
speaker identification. However, due to domain-specific challenges, there is limited applicability
of these technologies to HCAs. Some specific use cases are as follows:

Speech recognition: While Google speech recognition API achieves state-of-the-art perfor-
mance for speech recognition, it has limited applicability in real-time assistants for emergency
responders [94, 98, 102], depending on the (i) degree and type of noise present in the speech data
collected at the scene and (ii) the seamless availability of network connectivity at the emergency
scene. That highlights the need to develop an accurate, standalone, light-weight, open-source
speech recognition tool that could be integrated into an HCA for real-time decision support for
emergency response.

Textual information extraction for health data: Although there are several solutions for
information extraction from medical texts, including EHR data, medical journals, and articles, often
these techniques are not sufficient for other medical data [96–98], e.g., textual data related to EMS.
This is because EMS data often contain shorthand, abbreviations, and vocabulary that are unique
to the EMS domain, and EMS data can be much noisier than the EHR data. Thus, domain-specific
techniques should be developed for textual information extraction from noisy, domain-specific
health data.

Another related challenge is processing temporal information in medical data. It is al-
ready a challenging task for clinical records and EMR data [124] and would be even more chal-
lenging for the data collected by HCAs, since the latter data are noisier and less organized than
the former. The tasks relevant to temporal information extraction are (i) medical NLP techniques
for temporal information extraction, (ii) temporal ordering of events from different data streams,
and (iii) modeling and representing of time from different data streams. These tasks are crucial for
HCAs providing real-time decision support, as they often need to represent the sequence of events
chronologically.

Multimodal machine learning: While multimodal machine learning is gaining increased pop-
ularity for various AI applications, traditional methods may have limitations when applied to
HCAs due to fragmented data flow for healthcare applications and restricted access to health data.
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5.5 Performance Metrics

From the perspective of human-computer interaction research, the performance metrics for HCAs
can be categorized into the following classes:

• Efficiency of the assistive system, including response time, cost, and scalability.
• Effectiveness of the assistive system, including accuracy, reliability, confidence, explainabil-

ity.
• User satisfaction with the assistive system [26, 61, 77], including trustworthiness, perceived

ease of use, perceived need, perceived safety, data privacy, ethics, and security.

The performance metric can also vary depending on the context of the application: The perfor-
mance metrics for chatbots [61] would be different than the performance metrics for a humanoid
robotic assistant. However, the performance metric should be mapped with the overarching ob-

jective of the system to go beyond the traditional performance metrics listed above [61]. For ex-
ample, consider a cognitive assistant to provide navigational support to elderly and cognitively
challenged people for using public transport. Such system focuses on improving mobility inde-
pendence for the target population. So, the performance metrics should reflect that people are
more independent in terms of their mobility, e.g., they are taking more trips using public trans-
ports when using the navigational assistant.

Also, HCAs often require application-specific performance metrics [35, 50, 79]. For exam-
ple, Shu et al. [126] introduce an average normalized risk score for evaluating the safety of inter-
ventions suggested by HCA to the first responders in emergency medical services. However, most
of the existing research reviewed in this survey overlooks this critical issue.

5.6 Identifying Application Gap: New Application Areas for HCAs

We identify some gaps in application areas of HCAs and list some emerging areas for future HCAs.
Current HCAs mostly focus on assisting repetitive but more straightforward tasks and increase
scalability for effective delivery of healthcare, e.g., a virtual conversational agent for disease man-
agement and diagnosis, virtual interview agent, virtual therapy assistant. In the future, in addition
to improving such HCAs, a new trend of developing HCAs for augmentation of cognitive capabil-
ities might emerge.

5.6.1 Improving Cognition Ability of Users. In addition to assisting users to accomplish desired
tasks, future HCAs could target improving the cognition ability of the users. Parsons et al. use
Virtual Reality to treat people with autistic spectrum disorders. VR provides an interactive way
to train social skills by performing role-playing in different social contexts, thus enhancing the
mental stimulation of social events [91]. VR-based game [25] is used to train cognitive and motor
skills of Parkinson’s disease patients. The main cognitive demands involve planning movements to
hit or dodge targets, distribute attention between task and gait to memorize maximum information
to be able to answer at the end. Similarly, VR-based and AR-based virtual coaches are used to train
users [79], or enhance their cognitive ability and performance [18, 134]. Chicchi et al. explore the
potential of using AR to treat psychological disorders [19]. Since AR offers enormous opportunities
to create a virtual environment mimicking realistic scenarios and forces users to interact in such
an environment safely, it can be used to treat different kinds of phobia.

5.6.2 Training Healthcare Providers. As cognitive assistants become popular, one fundamental
research challenge remains on how to provide feedback to users in a way to complete the sub-
sequent tasks as well as to improve their cognition power. AR, VR, and MR platforms should be
utilized to address these challenges to develop personalized, efficient, and cost-effective HCAs for
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training patients and professional healthcare providers (see Table 3 for examples of such HCAs).
VR-based training platforms, such as the SimNow from da Vinci, are widely deployed to train med-
ical residents in a simulated surgical environment. Residents can train on guided or freehand sur-
gical procedures [49] as well as specific sub-tasks [49, 76] and get scores based on their proficiency
and safety. Such HCAs improve the learning curve of the residents while also saving hospital re-
sources by not requiring a human teacher/observer or an actual surgical robot to train with.

5.6.3 Automatic Documentation and Summarization. Another potential new area for HCAs is
assisting hospital staff in cognitively demanding and error-prone tasks, including recording and
interpreting data correctly and validating data. Since human errors in these tasks are common,
hospitals are understaffed, and the staff are overworked, such HCAs can reduce human errors and
increase health safety. For example, some recent research focuses on automatic documentation of
emergency response incidents and generation of patient care reports [21, 22, 102]. Padoy et al. [90]
present a model for automatic surgical activity recognition that can be used for offline documen-
tation/report generation of a given surgery and medical resource optimization. By predicting the
current surgical workflow, the time remaining to complete the surgery can be estimated, and this
can be used to provide reminders to surgical staff that are next-in-line to use the medical resource.

5.6.4 HCAs to Handle Uncertainties in Clinical Care. One of the central challenges of clinical
care is the uncertainties of clinical data. Based on user role, uncertainties occur in at least three
cases:

(i) First, while collecting and tracking patient’s symptoms and medical history, physicians often
receive uncertain information, because a patient may simulate, exaggerate, understate, or even
forget their symptoms. Therefore, it becomes complicated to infer any concrete conclusions from
such cases. Patients might have accurate but fragmented recall of the actual event and may describe
things in a non-linear fashion. A patient-facing HCA can help in such cases to collect specific
symptoms from the users/patients.

(ii) Second, while performing a physical exam, conducting a diagnostic test, or interpreting test
results, physicians and other care providers can overlook a sub-task or crucial information/feature.
A care provider facing HCA can “remember” things on their behalf. Cognitive assistance can also
be provided in the detection and monitoring of physiological and laboratory anomalies, a major
component of a clinician’s time [115]. AI-assisted interpretation of images such as chest x-rays has
come to be the most generally utilized assistive tool in real-time clinical practice and even presents
a potential role to play in the recent COVID-19 viral pandemic crisis.5

(iii) Third, patients often do not conform to the guidelines before a diagnostic test (e.g., not
taking certain medications before a specific blood test or dietary restrictions before a diagnostic
test) and thus test results do not reflect the original condition. To prevent such uncertainties, a
patient-facing HCA can track the user’s activity and provide reminders to them to ensure they
conform to the pre-test guidelines.

New HCAs can focus on handling such uncertainties in different stages of the healthcare work-
flow, ranging from patient self-care to diagnosis and treatment by physicians.

5.6.5 HCAs for Situational Awareness. Another gap in existing HCAs is lack of assistance for sit-
uational awareness. Potential examples include HCAs to monitor physicians and nurses in the ICU
for critical procedure to predict and generate alert for potential unsafe or risky interventions (e.g.,
for tunnel vision during intubation); tracking patients to make sure they follow the suggestions
and do not violate any safety measures (e.g., having a food or beverage that has contraindication

5http://blog.qure.ai/notes/chest-xray-AI-qxr-for-covid-19.
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with their medication) for treatment adherence. This is particularly important for treatment ad-
herence, since adherence to recommendations is often poor and typically degrades over time. A
challenge is to develop adaptive and personalized recommendations that result in high adherence
rates. Situational awareness can be augmented by clinical assistant devices that detect instability
while interpreting a variety of channels of incoming, real-time data [114].

5.6.6 HCAs for the Intensive Care Unit. The intensive care unit (ICU) represents a particularly
rich target for cognitive assistants in healthcare because of the dynamic and complex workflows
involved that are complemented by a copious amount of data [15]. The development of such solu-
tions is best approached with a team consisting of experts in a variety of pertinent domains. While
critical care medicine already possesses cognitive assistive tools to determine severity and predict
outcome, these would benefit from improvements that would make them more clinically useful
[140]. The identification of actionable targets is an important process in optimizing outcomes:
The determination of readiness for discharge has benefited from the development of cognitive as-
sistants [6]. Ultimately, decision-making regarding diagnosis and treatment is at the core of any
clinical process. In this case, reinforcement learning has been utilized to determine overall fluid
requirements and to optimize outcomes in sepsis by determining whether fluids or vasopressors
are the best choice at a particular juncture in time [59]. In general, cognitive assistants can be
applied in this clinical context to provide the necessary degree of prevention, control, and repair
that is required. Finally, these digital assistants must be utilized to prevent, rather than potentially
augment, overdiagnosis and overtreatment, and work to reduce the negatives (increased lengths
of stay, costs, adverse effects) associated with these errors in practice [116].

5.6.7 Life-long and Life-wide Assistants. Another emerging trend is developing life-long and
life-wide personal assistants that interact with a user for not only health-specific activities but
also other regular events and activities. One type of such applications is virtual coaches [18, 30,
79, 134]. Many current virtual coaches for behavior change are not cognitive yet, as they lack one
or more essential features of a cognitive assistant, i.e., interactive, adaptive, and context-aware. In
the future, they can be enhanced with the integration of other intelligent assistive services.

6 GLOSSARY OF ACRONYMS

The list of acronyms and shorthand forms used in this article are presented Table 8.

Table 8. List of Acronyms and Shorthand Forms Used in This Paper

Acronym Full form

2D 2-Dimensional
3D 3-Dimensional

ADL Activities of Daily Living
AI Artificial Intelligence
AR Augmented Reality
BLE Bluetooth Low Energy
CA Cognitive Assistant
CPS Cyber-physical Systems
CPU Central Processing Unit
CT Computed Tomography

EHR Electronic Health Record

(Continued)
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Table 8. Continued

Acronym Full form

EKG/ ECG Electrocardiography
EMA Ecological Momentary Assessments
EMR Electronic Medical Record
EMS Emergency Medical Services
FA First Assistant

GPS Global Positioning System
HCA Cognitive Assistant for Healthcare/Healthcare Cognitive Assistant
ICU Intensive Care Unit
IMU Inertial Measurement Unit
ML Machine Learning
MR Mixed Reality
MRI Magnetic Resonance Imaging
NIRF Near-Infrared Fluorescent
NLG Natural Language Generation
NLI Natural Language Inference
NLP Natural Language Processing
NLU Natural Language Understanding
PTSD Post-Traumatic Stress Disorder
RGB Red Green Blue

RGB-D RGB-Depth
STAR Smart Tissue Autonomous Robot

VR Virtual Reality

The left and right columns contain the shorthand form or the acronym and the full form, respectively.

7 CONCLUSION

Healthcare cognitive assistants (HCAs) are going to play a significant role in the near future to en-
sure evidence-driven, accurate, sustainable, and effective healthcare delivery on a large scale. The
main objective of this survey article is to identify the technical scope of current HCAs, discover
their characteristics and emerging trends, and identify critical research questions and application
gaps to enable future research on cognitive assistant technology for healthcare. We review state-
of-the-art HCAs from a wide variety of application areas that serve a range of users under different
scenarios spanning from preventive medicine to emergency care. Specifically, it presents examples
of HCAs from 26 types of applications that are categorized into three high-level classes according
to the overarching application goals. It identifies potential application requirements for each type
of application. It also identifies the characteristic features of HCAs (i.e., interactive, context-aware,
and adaptive) and provides a taxonomy of each of these features as observed in existing HCAs.
Then it reviews the critical CPS components of existing HCAs, including sensing or perception, ac-
tuation or response, and control and computation. This survey also identifies the emerging trends
and potential challenges concerning the features and CPS aspects of HCAs. Finally, it identifies a
novel set of challenges, research questions, and potential application gaps for future HCAs from
the perspective of machine learning and cyber-physical systems.
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