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Abstract—EMS (emergency medical services) deals with car-
diac arrest cases more frequently than any other fatal health con-
ditions all over the world. In this situation, a sequence of complex
and time sensitive interventions is performed to ensure the safe
recovery of the patient. We have developed emsReACT, a real-
time interactive cognitive assistant, to train EMS providers for
cardiac arrest cases in an emergency situation. This customized
tool interacts in real-time with the first-responder and collects
critical information. Using the conversational audio data available
at EMS training sessions, emsReACT provides responder-specific
decision support during the training based on domain specific
information extraction, context-aware tracking of cardiac arrest
protocols, and the dynamically changing condition of the patient.
emsReACT leverages a dynamic behavioral model and a task-
graph of two frequently used cardiac arrest EMS protocols.
We have developed an intelligent abstraction mechanism with a
critical risk-rating that drives an anytime algorithm to meet time
requirements for regular and critical situations. Our thorough ex-
perimentation reveals an average end-to-end time of 2.7 seconds
and 1.8 seconds for regular and critical interventions, thereby
meeting the time requirements of 7 and 3 seconds, respectively.
A qualitative study also reflects that over 70% of the 31 surveyed
EMS providers rate the system as helpful to properly train the
first-responders for executing cardiac arrest protocols.

Index Terms—Emergency medical services, Interactive cogni-
tive assistance, Intelligent systems, Medical technologies.

This work is supported by the following awards: 60NANB17D162 and
70NANB21H029 from the U.S. Department of Commerce, National Institute
of Standards and Technology (NIST).

I. INTRODUCTION

Cardiac arrest is a complex, life-threatening health condition
and one of the leading causes of death all over the world.
In addition to the number of lives lost, cardiac arrest has
a considerable economic impact as measured in terms of
productive years of life lost due to premature death or other
avoidable neurological disabilities [1]. Several factors can
affect the outcome of an out-of-hospital cardiac arrest. One of
which is the efficacy of emergency medical services (EMS)
providers and first-responders who provide initial care to
the suffering patient. To improve the quality of emergency
healthcare in such crucial EMS scenarios, real-time interac-
tive and assistive technologies should be adopted in EMS
training sessions. However, case studies from the U.S. and
Europe show that EMS training programs lack such automated
cognitive assistants [2], and different phases of training are
guided by manual interventions. Moreover, EMS scenarios
vary in terms of degree of severity and complexity. A real-time
cognitive assistant can contribute in multiple ways to improve
the EMS training sessions for cardiac arrest protocols since
the first responder would be physically working on a dummy
and obtaining real-time feedback on their actions.

Key characteristics of cardiac arrest make the problem
challenging. First, interventions relevant to the EMS cardiac
arrest protocols are complex and must meet time constraints.



Second, to follow the complex recovery procedure, first-
responders need to recall critical information under a high-
stress, overworked environment. This can lead to avoidable
human errors [3]. Third, different interventions possess vary-
ing levels of severity, risk, and required degree of EMS training
and expertise. Fourth, the importance of these factors also
changes dynamically with time as the condition of the patient
changes. For example, even some low-risk interventions might
cause irreversible damage to patients if they are performed in
an ill-timed or non-synchronized manner.

Addressing these characteristics of cardiac arrest lead to the
following technical challenges:

• How to develop and implement a behavioral model of
cardiac arrest protocols that match the dynamics of the
patient recovery procedure. The model should demon-
strate real-time situational awareness, i.e., it needs to
reflect the dynamic information flow (e.g., the state of
the patient) of an emergency cardiac arrest scene while
interacting with first-responders within specific end-to-
end time constraints. The dynamic information flow
includes: (i) changing vitals, (ii) required medication
dosage, (iii) varying degrees of risk, (iv) time-sensitivity
and (v) dependencies between interventions.

• How to perform real-time and accurate concept extrac-
tion from conversational data on cardiac arrest which is
unique for the EMS domain when compared to in-hospital
medical and clinical text. This demands a specialized,
domain-specific EMS lexicon to overcome the existing
clinical concept extraction tools’ limitations.

• How to perform real-time scheduling of a collection of
collaborating tasks with dynamic deadlines driven by
a risk factor. In addition, the solution should achieve
acceptable performance under the effects of ambient noise
at the scene, e.g., the noise of passing vehicles and
bystanders’ conversation.

Prior to creating a solution, we performed an empirical
study conducted with EMS providers from local and re-
gional EMS agencies. We found that automated and provider-
customized feedback on the quality of physical interventions
during EMS training should have significant positive impact on
the skill development of the providers. For example, analyzing
the training scene speech data from EMS providers to generate
protocol specific feedback on interventions does not require
any alterations during the incident, and creates lesser cognitive
overload and better learning conditions for EMS providers.

To address the challenges and train first-responders properly
for executing cardiac arrest protocols, we have developed
emsReACT - A Real-Time Interactive Cognitive Assistant for
Cardiac Arrest. Training in Emergency Medical Services. Note
that since first-responders constantly communicate with each
other during an scene, emsReACT is based on collecting and
utilizing conversational data.

The main contributions of this emsReACT are:

• Developed and evaluated the first NLP based, real-time,
and anytime cognitive assistant to provide automated, in-

depth cognitive support in Emergency Medical Services
(EMS) training sessions for time-sensitive and safety-
critical cardiac arrest protocols. To the best of our knowl-
edge, EMS still remains a novel domain for deploying
and investigating an anytime automated assistant. Our
research is the first one to address this scope.

• Designed a behavioral model and a task-graph as a
state machine using the action-flow from the recovery
procedure for two most frequently used cardiac arrest pro-
tocols. We deployed abstraction on the state-machine to
solve the challenge of dynamic deadlines for generating
feedback in different severity levels. We also introduced
a risk-rating metric that dynamically controls an anytime
algorithm to produce results in-time depending on the
changing severity of the patient. Feedback in critical and
regular situations have an average end-to-end response
time of 1.8 s and 2.7 s respectively, both of which are
within the requirements.

• For evaluation of emsReACT, we have collaborated with
a regional EMS provider to get access to 12,000 textual
narratives of real EMS scenarios. With direct participation
of multiple EMS providers, we have recreated training
exercises from 600 conversational textual cases. By in-
jecting relevant types of noise profiles to mimic real EMS
scenes in the audio data, we have evaluated different
performance metrics of emsReACT.

• Experimented on noisy audio data to address the real-
world issues and developed a resilient system that gener-
alizes acceptably well under adverse situations. emsRe-
ACT outperforms benchmark tools such as MetaMap [4],
cTAKES [5], and CLAMP [6] for the task of real-time
information extraction specific to cardiac arrest cases.
Considering the correctness, first-responders’ expertise
level, and timing, emsReACT feedback achieves an av-
erage F1-score of 87%.

• A survey of 31 EMS first-responders indicates that 23 of
them mark the module as helpful for real-world cardiac
arrest training. This provides strong evidence of the utility
of the system.

II. RELATED WORK AND BACKGROUND

A. Related Work

emsReACT addresses the problem of insufficient, real-time
automation techniques in EMS training; and proposes an
interactive, real-time, first-responder specific solution using
training scene audio data. Authors in [8] leverage augmented
reality and virtual reality based technologies for EMS train-
ing. However, we argue that emergency scenarios may have
poor visibility issues and require real-time assistants, and the
training phase should provide best surrounding conditions to
the EMS providers. Using audio data eliminates visibility con-
cerns. During the training, EMS providers go through various
cognitive overloads in cardiac arrest related cases. Facilitating
them with state-of-the-art real-time tools during training with
minimum equipment overload can significantly improve the
quality of the rescue task. Authors in [24] developed a method



which presents pattern-based state-chart modeling approach
for medical best practice guidelines such as model medical
guidelines with basic state-chart elements. As this method is
often not adequate for guaranteeing the correctness and safety
of medical cyber-physical systems, and formal verification
is required. To resolve the clinical validation aspect of the
previous work, authors in [25] and [26] proposed an approach
that transforms medical best practice guidelines to verifiable
state-chart models and supports both clinical validation in
collaboration with medical doctors and formal verification.
However, none of these approaches adhere to the real-time
dynamic aspect for any critical protocols. Previous studies [9]
suggest that automated, real-time assistants for EMS training
will ensure improvement of rescue quality. Authors in [10]–
[13] have addressed some of the challenges discussed in this
paper in the context of EMS, but they do not provide a real-
time solution that scales for different level of expertise of
the providers. Although there exist a few assisting systems
for emergency response, most of them are generic and lack
depth for any specific purpose. Sensitive cases such as cardiac
arrest require extensive details and analysis in training sessions
to prepare the EMS providers for real-world scenarios. em-
sReACT is a context aware real-time assistant that addresses
this specific domain by assessing the clinical condition using
training-scene audio data, and dynamically interacting with the
EMS providers in real-time during EMS training. Following
sections highlight related cognitive assistants from relevant do-
mains, and how emsReACT is unique from existing literature.

B. Background on Cardiac Arrest

1) Cardiac Arrest Protocol: There are four different forms
of cardiac arrest - ventricular fibrillation (VF), non-perfusing
ventricular tachycardia (VT), asystole (A) and pulseless elec-
trical activity (PEA) [14]. For a comprehensive evaluation in
this paper, we use the recovery protocols for two of these
types of cardiac arrest - Ventricular Fibrillation (VF), and
Pulseless Electrical Activity (PEA). The recovery protocols for
these two types of cardiac arrest are complex and dynamic. A
partial segment of two frequently used versions of the recovery
process for the cardiac arrest protocol is depicted in Figure 2.
For emsReACT, we use this standard EMS recovery protocol
as the underlying model of a real-time feedback system.
According to our EMT collaborators, each of the actions
and interventions must be carried out in a timely manner for
both of these protocols. The collaborators decided the time
requirements to be a maximum time delay of 7 seconds for
regular interventions and 3 seconds for critical interventions.
emsReACT can be extended to address the other two types of
cardiac arrests as well.

2) Intervention Risk and Certification Level of EMS
Providers: EMS providers have different certifications, and
they are allowed to perform different types of interventions.
For example, there are two categories of cardiopulmonary
resuscitation (CPR) training for healthcare providers and pro-
fessional rescuers: (i) Basic Life Support (BLS), and (ii)
Advanced Life Support (ALS) or Advanced Cardiac Life

Support (ACLS). BLS providers are experienced with skills of
scene safety, patient assessment, CPR by chest compressions,
breathing, use of an automated external defibrillator (AED)
and bag valve mask (BVM). EMT-basic providers are con-
sidered BLS. Compared to BLS providers, ALS or ACLS
providers may give injections, administer medications, and
place advanced intubation or airways - such as an endotra-
cheal tube, laryngeal mask airway or esophageal-tracheal tube.
EMT-advanced, EMT-enhanced and paramedics certification
holders are ALS providers. Table I shows certification levels
required for some of the interventions. For associated risks,
a higher value indicates a higher risk. Risk-rating (O), risk-
rating (NDWI), and risk-rating (DWNI) indicates associated
original risk, risk if not done when indicated, and risk if done
when not indicated, respectively.

TABLE I
SOME OF THE DYNAMIC RISKS AND REQUIRED CERTIFICATION LEVELS

Intervention

EMS
certifi-
cation
level

Risk-
rating
(O)

Risk-
Rating
(NDWI)

Risk-
Rating
(DWNI)

Prerequisites/
Checks

chest
decompres-
sion

Paramedic 1 4 4 Check Pt al-
lergies

defibrillation EMT-
Basic 4 4 3 Allergies

intubation EMT-
Advanced 4 4 4 Allergies

III. SOLUTION

emsReACT processes the training scene conversation of
the care providers in real-time to understand the ongoing
procedure, and provides suggestions and feedback. Specif-
ically, the speech data is collected from the first-responder
who is wearing a microphone. For each intervention, the first-
responder is required to verbalize each of the actions for peer
verification. Thus, using audio data from a training scene does
not create any additional burden on the care providers. Figure 1
shows the high-level architecture of the system. The following
subsections A,B, and E briefly describe the overall assistant
and are included for completeness. The subsections C and D
detail the main contributions of real-time dynamic scheduling
for this paper.

A. Speech-to-text conversion

The first step of our solution is speech-to-text conversion
in real-time. There is a lot of noise in EMS scenes, and
the accuracy of transcriptions are significantly affected under
such noisy conditions [11]. In the experiments of this paper,
we consider both accurate and noisy transcriptions to reflect
the potential variations in the performance of the off-the-
shelf speech recognition tools. As this is not one of the main
contributions of this paper, we do not detail the process here.
We use the state-of-the-art Google Speech API for this step.
Section IV provides a short summary of evaluation of different
state-of-the-art tools for speech-to-text conversion.



Fig. 1. emsReACT solution overview

B. Concept extraction and context detection

Cardiac arrest related concepts are extracted in real-time
from the speech, and converted to text as depicted in Figure 1.
For extraction of concepts from the text, different methods and
state-of-the-art clinical NLP tools, i.e. MetaMap [4], cTAKES
[5], EMSContExt [16] and CLAMP [6] exist. However, these
state-of-the-art tools are either not best suited for real-time
applications, or they are not adapted for the EMS domain.
In emsReACT, we use an EMS specific language model for
detecting concepts from the speech using a lexicon expansion
approach. We developed a detailed cardiac ontology [17], [18]
to detect concepts from live speech data. A group of certified
EMS providers helped us to develop a dictionary, D1 with the
following: (i) a specialized lexicon for cardiac arrest cases,
(ii) a comprehensive vocabulary with a contextually mapped
set of synonymous concepts and their possible homophones in
noisy transcripts, and (iii) the related conditions/intervention
prerequisites that might occur before/during the scene. We
developed a bidirectional encoder representation from a trans-
former (BERT) based model for automated lexicon expansion
and create another domain specific dictionary, D2. Using
binary classification on the dictionaries D1 and D2 in real-
time, cardiac concepts are extracted from the speech narratives.
We omit further details here as this is not our main contribution
for the overall system. A detailed research paper addressing
the development of the underlying BERT based EMS specific
language model and comparison with relevant work (i.e., [16])
is currently being processed for publication.

C. Task abstraction for scheduling anytime feedback

Cardiac arrest protocols do not follow any static flow of
action, rather the overall procedure consists of many different
dynamic actions or tasks (Figure 2). Implementing a system to
adhere to the complexities of the interactions and associated
time constraints is challenging. For example, most of the tasks
are correlated with one another, however some of the tasks
and dependencies are not mandatory. In addition, sometimes

Fig. 2. Intervention flow (partial) for VF and PEA recovery

optional measures are also performed by the first responders
for comprehensiveness of the patient recovery process. Critical
tasks must always be carried out in a timely manner, while
non-critical or optional tasks act as collaborative components
for an improved patient recovery. The state of the patient
which dynamically changes is the impetus for assigning a
dynamic deadline to the collection of tasks. The dependency
of the critical tasks must be carefully performed, but skipping
the non-critical tasks and dependencies provide an option
for the scheduling solution to adhere to the dynamically
determined time-constraints. For emsReACT, we intelligently
design the mandatory and optional nature of task correlation
using an abstraction method [23]. This abstraction enables
emsReACT to solve the dynamic time constraint issue and



Fig. 3. Task abstraction concept for emsReACT

thereby providing real-time feedback to first responders for
incidents with different severity.

A key component of our solution is creating the task graph.
The entire patient recovery process from Figure 2 must be
converted into a task-graph with necessary abstractions for
adhering to different time constraints, and how components
depend upon each other, including different types of task
collaborations. To provide some details, Figure 3 highlights
the task-graph abstraction for a small portion of the recovery
model. Here, the filled and dashed arrows indicate mandatory
and optional task dependency, respectively. A task is denoted
by an oval shape, and a set of related tasked is represented as
a module in rectangular shape. For each Taskijk or Moduleijk,
the associated properties i, j, and k denote whether the
task/module is mandatory or optional (null task), the associated
risk level according to current parameters or information, and
the required list of information and pre-requisites, respectively.
Dt denotes the dynamic deadline for the originating task.
Depending on the severity and critical nature, this deadline
updates dynamically for generating feedback through the Out-
put Feedback step. We discuss a dynamic risk-rating based
approach for updating the time-constraint deadline in the
following subsection (subsection D). A potential feedback
must be provided within this time-constraint for the associated
task if any information or pre-requisite is missing in the
input. If the time-constraint deadline permits, the optional
route of the task-graph is explored for more comprehensive
feedback. Otherwise, a prompt feedback is provided within
the time limit using the limited available information. This
type of scheduling method is uncommon in the literature in
an application level, specifically when we have both “within”
module anytime decisions and in-the-large anytime decisions
”at the end-to-end” module level.

D. Real-time risk-rating assessment for situational awareness

To adhere to the different time-constraints for generating a
feedback, we calculate a risk-rating via the anytime Algorithm
1. This rating indicates the current severity of the scene. The
following criteria determine the dynamic risk-rating of the
situation: (i) the set of allowed interventions by the acting
EMS provider, (ii) the changing conditions of the patient,
i.e., newly detected interventions and concepts and (iii) the

Algorithm 1: Assessing situational awareness by dy-
namic risk-rating calculation via a form of an end-to-
end Anytime Algorithm
Input: Streaming EMS audio, Concept list,

Intervention flow for cardiac protocols
Output: Real-time feedback, risk-rating, severity of

situation (ratingRisk, situationVar)
1 System Initialization
2 conceptRisk ← 0
3 interventionRisk ← 0
4 ratingRisk ← conceptRisk + interventionRisk
5 situationV ar ← 0
6 while Live audio stream is on do
7 if New intervention is found OR Updated rating of

previous intervention found then
8 Update interventionRisk
9 Match with Intervention Flow

10 Check rating Risk
11 if ratingRisk ≥ 7 then
12 situationV ar ← critical
13 Output Urgent Feedback (within 3 s)

14 else if End of Intervention Sub-task then
15 Output Feedback (within 7 s)

16 else
17 if Intervention is not carried out in time

then
18 Update interventionRisk
19 Check rating Risk
20 Output Feedback (3s OR 7s)

21 else if Wrong intervention is carried out
then

22 Update interventionRisk
23 Check rating Risk
24 Output Feedback (3s OR 7s)

25 if New concept found then
26 Update conceptRisk

27 ratingRisk ← conceptRisk + interventionRisk
28 if ratingRisk ≥ 7 then
29 situationV ar ← Critical
30 Output Urgent Feedback (within 3 s)

31 else if ratingRisk < 7ANDratingRisk > 0 then
32 situationV ar ← Regular
33 Output Feedback (within 7 s)

dynamic risks associated with ongoing procedure. Table I
shows the risks associated with each intervention, and how
the severity of the situation changes when the care provider
fails to carry them out in timely manner. Following the com-
plex recovery procedure and dynamic task-graph illustrated
in subsection C, and combining the current risk-rating with
associated time constraint for each intervention, emsReACT



calculates the sensitiveness of the situation in real-time. Then,
the assistant provides feedback to the first-responders to meet
the time requirements of 3 seconds for high-risk or critical
conditions (risk-rating ¿ 7), and 7 seconds for low-risk or
regular situations (risk-rating ¡ 7). If the deadline is 3 seconds,
then emsReACT performs only the mandatory tasks and none
of the optional, and when the deadline is 7 seconds the the
system attempts to accommodate all of the tasks. The feedback
component maximizes the accuracy of the automated response
by allowing as much information as possible from the input
audio stream within the time constraints. However, this timing
constraint sometimes forces the algorithm to ignore some part
of the remaining audio stream. Our experiments show that
the critical cases sometimes lose additional information due
to this time constraint. But for regular cases where the risk-
rating is below 7, the anytime algorithm waits for the end
of the intervention sub-task. The risk-rating and feedback
deadline are constantly being monitored and updated with
the change, update, or discovery of new scene concepts and
interventions. For interaction between the real-time assistant
and first-responder in the training, a list of frequently asked
questions during EMS training for cardiac arrest cases is also
provided to emsReACT. The first-responders can ask questions
during the process and emsReACT can respond to those
queries to minimize the cognitive overload of memorizing
different steps.

E. Personalized feedback generation for smart interaction

Different certification levels of care providers mandate the
presence of multiple EMS providers in cardiac arrest related
EMS training. When the acting EMS provider verbalizes
intervention details for peer verification, emsReACT identifies
the speaker and verifies the certification level of the EMS
provider. This feature provides personalized feedback for
specific level of EMS providers. Additionally, in some life-
critical interventions such as CPR compressions, emsReACT
uses speech identification technique along with the training
scene transcriptions to provide a timely reminder for switching
EMS provider to avoid exhaustion.

emsReACT is equipped with a speaker identification com-
ponent which processes on scene conversation. To ensure the
system is real-time, the model is trained with all the trainees
before the beginning of the session. Different approaches
exist in the literature for speaker identification. Sequence-to-
sequence models are used for solving speaker identification
problem, however the training phase is costly. Deep neural
network based solutions are not effective for real-time EMS
environment. We apply the basic method proposed in ARASID
[21], this method is specially suitable for adverse conditions
found during EMS training. Our experiments reveal following
reasons for using this method: (i) ARASID identifies speakers
using an artificial reverberation generator with different pa-
rameters to generate different artificial voice samples for each
speaker. This means that it works well with limited training
samples. (ii) The solution is easy to deploy, (iii) It filters
out non-speech and overlapped speech samples, and separates

TABLE II
DESCRIPTION OF SYNTHESIZED DATASET FOR EMSREACT

Type Description Size/Samples

Text EMS narratives 200
Noise-inserted EMS narratives 200

Audio

Noisy audio (ambient noise) 20
Noise-free audio 20
Noise profiles 8
Audio with artificial noise (using 8
noise profiles) (20 X 8) = 160

non-trained speakers’ samples. This feature means that the
system filters out a large portion of background speech such
as television speech, or an outside visitor. We do not detail
the training method of ARASID for emsReACT due to space
limitations.

IV. EVALUATION SETTINGS AND RESULTS

For evaluation or emsReACT, we have synthesized a dataset
from real-world post incident EMS narratives obtained through
our regional collaborator. EMS scenes were recreated for
training exercises with multiple certified EMS providers in
the laboratory settings. Techniques discussed in [7], [13]
were applied to develop synthesized dataset with noise-free
audio, noisy audio, noise-free textual data, and noisy textual
data. Although emsReACT takes audio streams as inputs,
additional evaluation is conducted with the textual narratives
to emphasize the robustness of emsReACT with respect to
qualitative errors and different types of noises due to real-
time transcription. Different styles of communication among
the first-responders are also examined. We collected speech
data from 14 EMT professionals along with their certification
level while creating audio simulations to validate the accuracy
of our speaker identification component. We used synonymous
concepts, noise mappings and different homophones to enrich
our specialized EMS lexicon [16]. Our dataset is created
in a comprehensive fashion by considering audio, text and
relevant noise profiles for training and testing different parts
of emsReACT individually and in combination, i.e. accuracy
and latency of speech to text conversation, cardiac concept
detection, and quality of generated feedback in terms of
generic and personalized nature. Time-sensitivity is added as a
feature in deciding the accuracy. An ill-timed correct feedback
is considered as false positive. For experiments mentioned in
this paper, we used a regular computing machine without any
accelerated processing unit. emsReACT and it’s evaluations
are non GPU-intensive and the execution time recordings use
regular CPU clock of the system.

A. Data Collection and Labelling

As live data collection in real EMS scenes requires certain
approval and has privacy concerns, we collaborated with
a regional EMS provider organization to collect the post-
scene transcripts. We applied a style-transferring mechanism
to recreate conversational data from these narratives. The
annotations were supervised by certified EMS providers. Table



II shows the sources, sizes, and types of our dataset. We have
generated synthetic data by adding relevant audio and textual
noise to original noise-free data [13]. However, some of our
audio data originally had background noise. We have also
used textual data from our regional collaborator. Each of the
textual narrative samples comprises of 1000-1200 words, and
the audio samples are 5-10 minutes long on average. To train
emsReACT and different components of it, we have randomly
selected half of each type of data shown in Table II, whereas
the other half is used for test purposes.

B. Experimental Results

For the sensitivity of each intervention, correct timing of
each feedback is an important element for emsReACT. The
overall accuracy depends on the accuracy of each component.
For example, if the speaker identification component did not
detect the correct EMS provider and provided personalized
feedback according to the wrong certification level, accuracy
metrics record lower performance results. We also consider a
correct, but ill-timed suggestion or reminder as false positive
for evaluating the feedback system. Due to a lot of actual
and simulated noise in our recreated EMS datasets, often
parts of the original transcript gets distorted. This condition
is the most contributing factor for overall lower accuracy
numbers. Noise in audio sometimes leads to an indecisive
state for emsReACT, different accents and communication
styles adversely effect the speech recognition component. To
demonstrate the applicability and time-sensitivity of emsRe-
ACT during EMS training sessions, here we show the accuracy
of processing for concept detection, and generating an accurate
feedback. We train the speaker identification component before
the simulation, the transcription and speaker identification
phase takes place concurrently. Table III shows the summary
of overall accuracy. However, if the situation is detected as
critical, emsReACT provides instantaneous feedback without
further processing the transcription. This reduces the average
time latency, but ignoring the remaining of the transcription
causes the Precision, Recall and F-1 score to drop slightly. The
minimum, average, and maximum end-to-end time for regular
and critical feedback are 2.1, 2.7, 4.6 seconds, and 1.3, 1.8,
2.4 seconds, respectively.

Fig. 4. Accuracy of emsReACT for different types of data

1) Performance of Speech-to-Text Conversion under Noise:
We evaluate comparative performances of state-of-the-art

speech-to-text conversion tools under noise. Three off-the-
shelf speech to text APIs - Google speech API, Microsoft
speech API, IBM BlueMix API and one offline tool Deep-
Speech [22] are compared for accuracy and latency metrics
using live speech and audio data in both noisy and noise-free
environments, as depicted in Table IV. The performance is
measured in terms of runtime (seconds) and word error rate
(WER) [11]. The runtime indicates time needed to transcribe
each sentence on average, the word error rate (WER) is
indicative of how much noise or distortion exists in the
transcription. The Google cloud API outperforms the other
tools in terms of WER (at least 16% lower than any of the three
tools compared), thus we select this API for emsReACT even
though this requires internet connectivity and slightly longer
(0.15 seconds) runtime than the offline tool DeepSpeech. Even
though the WERs are somewhat high, our solutions are robust
to this amount of WER as we use a vocabulary which is
comprised of empirical mappings of homophones and distorted
versions to original concepts.

2) Comparison with existing methods for clinical concept
detection and personalized feedback generation: State-of-the-
art clinical information extraction tools such as MetaMap,
cTAKES, and CLAMP work well with textual narratives. But
these tools also process for other aspects of clinical contexts
such as ranking, categorization and confidence scores. Thus
the time required for detecting one specific concept is often too
high for a real-time system. IMACS [10] provides feedback
in real-time, however the feedback is generic for all the
first-responders. emsReACT provides first-responder specific
and customized solutions in real-time. Table V shows the
comparison of average F-1 score, and average time required
for, (i) generating a feedback/reminder, and (ii) detecting
a cardiac concept during EMS training, respectively from
different types of data from our testing dataset for all state-of-
the-art methods. emsReACT has the highest F-1 score of 91%
(at least 8% higher compared to IMACS) and lowest average
time of 2.7 seconds (at least 0.4 seconds lower compared
to other approaches) to generate a generalized feedback in
real-time and to detect a cardiac concepts, respectively. For
generating a feedback personalized according to the expertise
level of the current first-responder, emsReACT shows an F-1
score of 87%. emsReACT identifies the first-responder from
speech, and uses a mapping that holds the certification level
information for that specific first-responder for providing cus-
tomized feedback. As IMACS does not generate personalized
feedback, and MetaMap, cTAKES, CLAMP do not gener-
ate any feedback, we compare the accuracy of generalized
feedback with IMACS and detection of cardiac arrest related
concepts with all four of the methods.

Details of Precision and Recall scores are also listed in
Table V. emsReACT has at least 9% higher Precision and 3%
higher Recall compared to the other approaches for detecting
cardiac concepts. This is due to the generalization towards a
wide range of noisy, real-world cases. emsReACT matches
concepts from live narratives against a predefined vocabulary
set listed with all possible cardiac arrest related concepts. This



TABLE III
PERFORMANCE OF EMSREACT FOR PERSONALIZED ON-SCENE FEEDBACK AND TIME DELAY

Performance of emsReACT / Metrics Average Latency of Each Sentence Level Subtask (s) P R F-1

On-scene personalized feedback (regular) Speech to text transcription via Google API 0.94 s 0.89 0.86 0.87Processing for concept and semantics detection 1.76 s

On-scene personalized feedback (critical) Speech to text transcription via Google API 0.57 s 0.78 0.71 0.74Processing for concept and semantics detection 1.24 s

approach significantly reduces the false positives, and provides
higher Precision scores. Compared to IMACS, we have also
developed a mapping of homophones to the original cardiac
concepts to ensure more resilience of emsReACT under noisy
situations. The database we developed also consists of different
pre-requisites of various interventions, and range of acceptable
numerical quantities for intervention lengths and medication
dosages for the cardiac symptoms. Using these information,
emsReACT detects possible missing information and diagnosis
while the training scene is ongoing, and provides crucial,
decisive and timely feedback. This unique approach yields
better Recall scores for emsReACT. For providing generalized
feedback, emsReACT outperforms IMACS by at least 8% in
Precision and by 7% in Recall. Training with a larger dataset
increases the accuracy of our solution.

3) Performance of emsReACT for different types of data:
To train our module, we have randomly selected half of each
type of data shown in Table II. The other half is used for
testing. The test dataset shows that for different types of data,
average F-1 score is 87% (Figure 4) for generating the correct
feedback specific to first-responder’s expertise level. The error
is mainly due to the inaccurate transcription from the speech-
to-text engines, specially noisy surroundings affect emsReACT
adversely. As we induce different noise profiles into the audios,
the performance of emsReACT decreases. Some of the error is
propagated due to out-of-flow actions by the first-responders.
emsReACT detects only the interventions that are verbalized
by them and recognized by the speech API. The inclusion
of correct timing of feedback as a feature for determining
accuracy metrics results in lower performance numbers. Low
recall rate is contributed by some of the out-of-time feedback
by emsReACT. Missing information from the conversational
data creates a time-lag in the processing. emsReACT sends
a wrong alert while waiting for the data, and consequently
provides an incorrect feedback. Ill-timed correct suggestions
are also resulted from such cases.

4) Qualitative Evaluation: emsReACT is also evaluated
qualitatively by collecting anonymous EMS providers’ re-
sponses using a Likert scale-based rating and open-ended

TABLE IV
COMPARISON FOR TRAINING SCENE TRANSCRIPTION TOOLS.

Metric/Tools Google
Speech

Microsoft
Speech

IBM
BlueMix DeepSpeech

WER (%) 31 47 49 61
Runtime (s) 0.94 1.08 1.23 0.79

TABLE V
COMPARISON FOR CARDIAC CONCEPT DETECTION AND/OR GENERATING

FEEDBACK

Method
Avg.
time
(s)

Metric
Detecting
cardiac
concepts

Genera-
lized
feedback

Persona-
lized
feedback

emsReACT 2.7
P 95.14 93.72 88.89
R 91.73 89.64 85.29
F1 93.40 91.64 87.05

IMACS 3.11
P 85.91 85.01 N/A
R 88.54 82.03 N/A
F1 87.21 83.49 N/A

MetaMap 3.14
P 71.94 N/A N/A
R 63.21 N/A N/A
F1 67.29 N/A N/A

CLAMP 3.21
P 65.21 N/A N/A
R 58.14 N/A N/A
F1 61.47 N/A N/A

cTAKES 3.9
P 60.24 N/A N/A
R 63.95 N/A N/A
F1 62.04 N/A N/A

Fig. 5. Survey from 31 anonymous EMS providers

interview. 31 EMS providers, who were not involved in the de-
velopment phase, participated in the evaluation. For the overall
idea and performance of emsReACT, 23 of the participating
EMS providers consider the solution as either above standard,
useful, or very useful as depicted in Figure 5. However, the re-
maining group of 8 EMS providers remarked that emsReACT
might occasionally hinder care-providing when the provider
interacts with it. Interestingly, in an open-ended interview, the
later group also disagreed with the idea of using electronic
devices and gadgets such as a microphone during EMS scene.
The average year of EMS experience for the first and second
groups are over 4 and 8 years, respectively. The demographic
information collected in the beginning of the survey indicates
that the second group of 8 EMS providers were less exposed to
technological gadgets during their overall professional careers.



V. CONCLUSION

To the best of our knowledge, emsReACT is the first cog-
nitive assistant that addresses the challenges of personalized,
interactive decision support in EMS training. By utilizing an
intelligent abstraction method in the recovery task-graph in
real-time, emsReACT builds a collaborative pipeline of tasks
that runs first without deadlines, and then dynamically identi-
fies different timing constraints based on a novel risk factor.
Importantly, this pipeline is not a static directed-acyclic-graph
and there needs to be a collaborative interaction between the
elements of the pipeline. This combination of real-time chal-
lenges is not solved in the literature; thus, our solution is novel.
Moreover, leveraging a novel data driven approach on the
live speech data, emsReACT provides cognitive solutions for
automated assessment of dynamic cardiac arrest related EMS
training scenes. emsReACT provides customized feedback to
the care providers according to their specific certification level
in timely manner. Our thorough evaluation shows an average
F1-score of 87% for personalized feedback generation in EMS
training sessions in real-time, the average end-to-end time
recorded for the feedback is 1.8 and 2.7 seconds for critical and
regular cases respectively, which is within the acceptable delay
span according to professional EMT personnel. emsReACT’s
accuracy is not 100% so it may sometimes provide wrong
advice or feedback. However, it is not intended to work
alone. Instructors work alongside emsReACT and can correct
occasional errors. Extensive survey with 31 anonymous EMS
providers reveal that emsReACT can play an important role
in reducing the real-time cognitive overload. In the future we
expect that emsReACT can also be used in actual EMS scenes.
The methods discussed in this research can further be extended
to address other complex system task-graphs, i.e., those found
in systems that combine artificial intelligence and real-time
solutions such as smart cities and smart health.
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