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Abstract—This paper demonstrates targeted cyber-physical 

attacks on teleoperated surgical robots. These attacks exploit 
vulnerabilities in the robot’s control system to infer a critical time 
during surgery to drive injection of malicious control commands 
to the robot. We show that these attacks can evade the safety 
checks of the robot, lead to catastrophic consequences in the 
physical system (e.g., sudden jumps of robotic arms or system’s 
transition to an unwanted halt state), and cause patient injury, 
robot damage, or system unavailability in the middle of a surgery. 
We present a model-based analysis framework that can estimate 
the consequences of control commands through real-time 
computation of robot’s dynamics. Our experiments on the 
RAVEN II robot demonstrate that this framework can detect and 
mitigate the malicious commands before they manifest in the 
physical system with an average accuracy of 90%. 

Keywords—Targeted Attacks, Malware, Telerobotics, Robotic 
Surgery, RAVEN II robot, Cyber-physical systems 

I. INTRODUCTION 
Robotic surgical systems are among the most complex 

medical cyber-physical systems. They enable performing 
minimally invasive procedures with better visualization and 
increased precision using 3D magnified views of the surgical 
field and tele-manipulated arms and instruments that mimic 
human hand movements. During 2007-2013, over 1.74 million 
robotic procedures were performed in the U.S. across various 
surgical specialties, including gynecology, urology, general 
surgery, cardiothoracic, and head and neck surgery [1]. The next 
generation of surgical systems are envisioned to be teleoperated 
robots that can operate in remote and extreme environments 
such as disaster-stricken areas, battlefields, and outer space [2].  

Past studies have emphasized the importance of security 
attacks that compromise the communication channels in 
medical devices such as implantable cardiac defibrillators [3], 
wearable insulin pumps [4], and teleoperated surgical robots 
[5]-[8]. For example, studies [7] and [8] demonstrated denial of 
service (DOS) and man-in-the-middle (MITM) attacks on the 
network communication between the teleoperation console and 
the control system of a surgical robot. To the best of our 
knowledge, no previous work has discussed the possibility of 
directly compromising the control systems of surgical robots. It 
is usually assumed that getting access to the robot control 
system is unlikely.  

 In this paper, we demonstrate cyber-physical attacks on the 
control system of surgical robots in the event when the attacker 
is able to install a malware to strategically inject faults into the 
control system at critical junctures during surgery. In order to 
install the malware, we assume that the attacker has access to the 
system as an insider or through remote code execution. The 
malware modifies the control commands while preserving their 
legitimate format, making this type of attacks difficult to detect 
without understanding the dynamics of the robot’s manipulators.  

To detect and mitigate such attacks, we have developed a 
model-based analysis framework based on the dynamics of the 
surgical robot and use it to preemptively determine if a 
command is malicious before the actual execution of the 
command can progress in the physical robot. We validated the 
detection experimentally using two real attack scenarios 
involving injection of unintended user inputs and unintended 
motor torque commands. 

The attacks are deployed via a self-triggered malware with 
embedded: (i) logging mechanisms for collecting and analyzing 
measurements from the surgical robot in order to identify the 
critical states and (ii) fault-injection mechanisms for inserting 
malicious commands into the robot control system. The 
deployment of the malware presumes that the attacker has 
penetrated the hospital network by exploiting vulnerabilities in 
the underlying hospital network and has obtained access to the 
robot control system by exploiting a zero-day remote code 
execution vulnerability (similar to the ones listed in Table III). 
This is a credible threat as recent reports indicate the existence 
of many vulnerabilities in hospital networks [9], in commonly 
used hospital medical devices [10], and in the software firewall 
of surgical robots [11], that allow attackers to gain access to 
critical medical devices. 

The cyber-physical attack scenarios presented in this paper 
have the following important characteristics that complicate 
their detection and diagnosis: 

1) Attacks exploit the TOCTOU (time of check-time of use) 
vulnerability between the safety checks on the commands 
and the actual execution of the commands. 

2) Attacks are initiated in the cyber domain by modifying the 
control commands while preserving their legitimate format 
and syntax, i.e., no change to the control flow (in terms of 
the sequence of the functional blocks invoked) and no 
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change to the performance of the target program (preserving 
the real-time constrains of the robot control software).  

3) Attacks directly result in catastrophic consequences in the 
physical domain (e.g., abrupt jump of the robotic arms), 
causing damage to the robot or harm to the patient. They are 
hard to distinguish from incidents caused by system or 
human induced accidental failures and therein lies the 
importance of these attacks–answering the question why 
attacker does not simply kill the robot. If deployed on wide 
scale, such attacks could cause major disruption and damage 
to surgical facilities and cause financial or legal impacts. 

 We illustrate the attacks by implementing a prototype of the 
malware targeting the RAVEN II robot, an open-source 
platform for research in teleoperated robotic surgery [12]. We 
use the RAVEN robot as our experimental platform for several 
reasons: (i) it contains the typical control and safety mechanisms 
used in the state-of-the-art robotic surgical systems, (ii) it is a 
platform indicative of the next-generation teleoperated surgical 
robots with both remote operability and networking features, 
and (iii) it is accessible for demonstrating security attacks and 
studying their impact without the need to interrupt real surgical 
procedures or risk of harming patients. 

Our experiments on the RAVEN II robot demonstrate that: 
a) injecting malicious commands to motor controllers can lead 
to abrupt jumps of a few millimeters in the robot manipulators 
within only a few milliseconds and b) our dynamic model-based 
analysis framework can detect malicious commands and 
mitigate their impact before they manifest in the physical 
system, with an average accuracy of 90%. 

II. BACKGROUND 

A. Robotic Surgical Systems 
Surgical robots are designed as human-operated robotically-

controlled systems, consisting of a teleoperation console, a 
robot control system, and a patient-side cart (which hosts the 
robotic arms, holding the surgical endoscope and instruments). 
The most critical component of the robot control is the electronic 
control system, which is responsible for the following:  

• Receiving the surgeon’s commands issued using master 
manipulators and foot pedals on the teleoperation console. 

• Translating the surgeon’s commands into the 
corresponding surgical robot movements. 

• Providing video feedback of the surgical field (inside 
patient’s body) to the surgeon through 3D vision on the 
teleoperation console. 

• Performing safety checks on to ensure the safe operation 
of the surgical robot.  

Figure 1(a) shows the typical control system structure of a 
surgical robot based on our review of publicly available 
documents on commercial and open-source robotic surgical 
platforms including da Vinci Surgical System [13][14], the da 
Vinci Research Kit [15], and the RAVEN II robot [12][16]. In 
this paper we use the RAVEN II robot as an experimental 
platform for implementing the attack scenarios and 
characterizing the robot’s resiliency to those attacks. We treat 
the RAVEN robot as a grey box system. (i.e., we do not have 
any access to the robot’s source code.)  

B. RAVEN II Robotic Surgical Platform 
Figure 1(d) depicts the configuration of the RAVEN II 

system. The desired position and orientation of robotic arms, 
foot pedal status, and robot control mode are sent from the 
teleoperation or master console (not shown in the figure) to the 
robotic control software over the network using the 
Interoperable Teleoperation Protocol (ITP), a protocol based on 
the UDP packet protocol. The control software receives the user 
packets, translates them into motor commands, and sends them 
to the control hardware, which enables the movement of robotic 
arms and surgical instruments. The robot consists of two cable-
driven surgical manipulators attached with tool interfaces and 
the instruments. Each surgical manipulator is operated by DC 
motors and has seven degrees of freedom [12]. 

As shown in Figure 1(b), the control software runs as a node 
(process) on the Robotic Operating System (ROS) middleware 
[17] on top of a real-time (RT-Preempt) Linux kernel. It 
communicates with the motor controllers and a Programmable 
Logic Controller (PLC) through two custom 8-channel USB 
interface boards. The interface boards include commodity 
programmable devices, digital to analog converters, and 
encoder readers. The motor controllers send movement 
commands (torque values calculated based on the desired joint 
positions) to the DC motors and read back the encoder values 
from the motors (to estimate the current joint positions). The 
PLC controls the fail-safe brakes on the robotic joints and 
monitors the system state by communicating with the robotic 
software.  

(a) (b) (c) (d) 
Figure 1. (a) Typical control structure in surgical robots, (b) Software and hardware control loops in the RAVEN II robot, (c) Operational state machine of the
RAVEN II robot, d) RAVEN II surgical platform [12]. 

 

396



 

As shown in Figure 1(c), the RAVEN control system goes 
through an initialization phase before getting ready for the 
operation. During the initialization phase, the mechanical and 
electronic components of the system are tested to detect any 
faults or problems. After successful initialization, the robot 
enters the “Pedal Up” state, in which the robot is ready for 
teleoperation but the brakes are engaged. When the foot pedal 
is pressed by the human operator, the robot moves to the “Pedal 
Down” state. In this state the brakes are released, allowing the 
teleoperation console to control the robot [12][16].  

Figure 2 shows the kinematic chain of the RAVEN control 
software. The operator commands are sent to the control 
software as incremental motions (desired end-effector positions 
(pos_d) and orientations (ori_d)). The current end-effector’s 
configurations (pos and ori) are calculated based on motor 
encoder feedback using forward kinematics function. The 
inverse kinematics calculates the joint (jpos_d) and motor 
(mpos_d) positions that are required to obtain the desired end-
effector configurations and positions. Finally, the amount of 
torque needed for each motor to reach its new position is 
obtained from a Proportional-Interal-Derivitive (PID) 
controller. The motor torques are then transferred in the form of 
DAC commands (DAC_value) to the motor controllers on the 
USB boards, to be executed on the motors [18]. 

 
Figure 2. The kinematics chain in the RAVEN II control software 

The RAVEN II robot has the following safety mechanisms [12]: 
• A physical start button should be pressed to take the robot 

out of the emergency stop (“E-STOP”) state. At any time 
pressing the emergency stop button will immediately stop 
the robot by putting the PLC and control software into the 
“E-STOP” state (see Figure 1(c)). 

• Whenever the human operator lifts the foot from the pedal, 
the system enters the “Pedal Up” state and engages the 
fail-safe power-off brakes on the motors and disengages 
the master console from manipulating the surgical arms.  

• The control software performs safety checks on the motor 
controller commands before they are sent to the USB I/O 
boards. These safety checks compare the electrical current 
commands sent to the digital to analog converters (DACs) 

with a set of pre-defined thresholds to ensure the motors 
and arm joints do not move beyond their safety limits.  

• The control software sends a periodic (I’m alive) square-
wave watchdog signal to the PLC through the USB boards. 
Upon detecting any unsafe motor commands, the control 
software stops sending the watchdog signal. The PLC 
safety processor monitors the watchdog signal and in 
absence of the watchdog signal puts the system in the 
Emergency-Stop (“E-STOP”) state. 

III. CYBER-PHYSICAL ATTACKS ON THE RAVEN II ROBOT 
Previous studies on fault-injection based safety assessment 

of RAVEN II system have shown several vulnerabilities in the 
safety mechanisms of the robot [19][20]. In this paper, we show 
that malicious parties can exploit such vulnerabilities to perform 

cyber-physical attacks that are difficult to be detected without 
modeling the robot’s dynamics.  

The attacks exploit the dynamic loading feature for system 
libraries in the underlying Linux OS and vulnerabilities in 
RAVEN II software-hardware interface to inject malicious 
actions at different layers of the robot control structure (shown 
in Figure 1(a)). The attacks can cause a variety of adverse 
impacts on the robot functionality, the patient, and these 
impacts are potentially difficult to distinguish from unexpected 
failures. TABLE I summarizes variants of those attacks, 
categorized by the target layer in the control structure (see the 
red marks in Figure 2), the target system library, the type of 
malicious action, and their observed impact on the system (as 
reported in [20]). We specifically focuse on two attack 
scenarios that cannot be detected and mitigated by the existing 
safety mechanisms in the RAVEN II robot:  

A. Injection of unintended user inputs after they are 
received by the control software. These attacks either cause 
hijacking the control of the robot by performing an action 
that was not initiated by the operator or lead to unintended 
jumps and unwanted halt states.  

B. Injection of unintended motor torque commands after 
they have passed the safety checks and before transmission 
to the USB interface boards and motor controllers.  These 
attacks can lead to unintended moves and abrupt jumps of 
the robot or unwanted halt states. 

TABLE I. VARIANTS OF ATTACKS ON ROBOT CONTROL STRUCTURE 

Target 
Layer 

Target 
System 
Library 

Malicious 
Action 

Observed 
Impact 

Master Console 
and Control 

Software 

Socket comm. 
(bind, 
received_from) 

Change  
-port number 
-packet content 

Hijack trajectory 
Unwanted state (E-
STOP) 

Control 
Software 

Math  
(sin, cos)  

Add drift to 
-output 
-input 

 
Unwanted state 
(IK-fail) 

Control 
Software and 

Hardware Interface  
(read, write) 

Change  
-robot state in PLC 

 
Homing Failure 

Software and 
Physical Robot

Change  
-motor commands 
-encoder feedback 

Abrupt Jump/  
Unwanted state (E-
STOP) 
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We exemplify the attacks by deploying attack scenario B 
(described above) on the RAVEN II robot. We used a desktop 
computer running RAVEN II software on top of ROS Indigo 
and Linux Ubuntu 14.04 LTS with SMP Preempt Real-time 
kernel. The machine contained an Intel Core i5 CPU@2.90 
GHz and 8GB of RAM. The malicious code was implemented 
using bash, Python scripts, and ROS commands and was 
executed in the user space (no root privilege was needed to 
execute the malware). 

A. Attack Model 
We focus on the steps taken after the attacker has obtained 

remote access to a robot control system on a hospital’s network. 
The attacker can gain such access by exploiting weaknesses such 
as vulnerable services, unpatched medical devices, stolen 
credentials, or insider attacks to penetrate the hospital network. 
Once in the hospital network, the attacker can move laterally 
across devices within the hospital, steal additional credentials 
and discover vulnerabilities until the target robot control system 
is located and penetrated. The attacks discovered by TrapX 
Security, Inc. [10], the Stuxnet attack [21], and the discovered 
vulnerability in the firewall of a commercial robot [11] serve as 
examples of how these penetration attacks could be performed. 
Table V shows the common entry points exploited in recent 
attacks detected on hospital networks. The purpose is to assert 
that access to the robot control system in present day 
environments is not only feasible but quite probable.  

After getting access to the robot, the intention of the attacker 
is to remain on the target system without being detected for as 
long as possible in order to (i) collect data from the system, (ii) 
analyze the collected data to create an operational profile of the 
robot and determine the best time for activating the attack, and 
(iii) trigger the attack at the desired critical time.   

We assume the attacker does not have access to the source 
code or internal design of the robot. The attacker gathers 
information about the system configuration and potential 
vulnerabilities of the robot through publicly available 
documents (e.g., previous publications on vulnerabilities of 
RAVEN II robot [8][19][20]) or through a vulnerability 
discovery process consisting of targeted probing and fuzzing.  

There are specifically two pieces of information that the 
attacker must have about the robot in order to perform a 

successful attack: (i) the state machine representing robot 
operations and (ii) a side channel that can be used to extract the 
current state of the robot in order to determine the best time to 
trigger an attack. The attacker also needs at least a user privilege 
to download and run the malicious code on the system. 

B. Attack Description 
In the attack scenario illustrated in Figure 3, an attacker (who 

penetrated RAVEN control system) first eavesdrops (intercepts) 
on the USB communication between the RAVEN control 
software and the USB I/O boards. The intercepted packets are 
analyzed offline to extract the state information of the surgical 
robot, i.e., determine the state of the robot according to the 
operational state machine depicted in Figure 1(c). The extracted 
data are then used to build a malware for triggering (injecting) 
an attack at a critical time during the robot’s operation, i.e., when 
the robot is operating in the “Pedal Down” state.  

Figure 3 describes the steps to execute the attack on a RAVEN 
II robot: These steps are grouped into three phases: Attack 
Preparation Phase, Analysis Phase, and Deployment Phase. 
The Attack Preparation Phase and the Analysis Phase need to be 
performed only once to obtain the information necessary to 
design and implement the final malware capable of triggering an 
attack when the robot is most vulnerable. The details of each 
phase are described next.  

1) Attack-Preparation Phase: The goal of the Attack-
Preparation phase is to eavesdrop on the communication 
between the RAVEN control software and the USB I/O boards 
and send that information to the attacker for offline analysis. 
This is achieved by (i) downloading and installing a malicious 
shared library on the RAVEN control system, (ii) forcing 
processes on the system to link to the malicious shared library, 
and (iii) logging the RAVEN USB communication and 
forwarding it to the attacker on a remote server using UDP 
packets.  
 In a Linux system most programs do not communicate 
directly with the kernel. Instead, the program invokes a function 
in a runtime library (e.g., libc), which performs the necessary 
preparation of the arguments and then triggers the corresponding 
system call (see Figure 4 for an example of calling the write 
system call in the RAVEN control software). When a program 

 
Figure 3.  Attack scenario B (injection of unintened motor torque commands) in RAVEN II surgical robot 
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starts, the runtime linker searches the default path to find the 
runtime library to be linked. If an environment variable 
LD_PRELOAD or the directory /etc/ld.so.preload is defined in 
the system, then the linking process is forced to first search, load, 
and link to the library object in the path pointed by the 
LD_PRELOAD or /etc/ld.so.preload [22]. If the alternative 
library object has a function with the same name as function 
defined in the original runtime library (e.g., read or write), the 
alternative library’s function will be called. This allows the 
alternative library to “wrap” the runtime library function, 
intercepting system calls. The alternative library function can 
call the original system call, not call it, or do some malicious 
task before calling it. This approach has been used by several 
rootkits to hide their operations [23].  
 In implementing the attack scenario B, we exploited the 
Linux dynamic linking feature to install malicious system call 
wrappers for the write system call in order to eavesdrop on the 
commands sent to the robot motor controllers and the safety 
PLC through USB. An attacker with the user privilege, can add 
the LD_PRELOAD environment variable to user’s startup 
profile (e.g., .bashrc), so all future terminals started by this user 
will have the LD_PRELOAD environment variable set to point 
to the malicious shared library. The attacker with root privilege 
can add the path to the malicious shared library to 
/etc/ld.so.preload, so that new processes started by any user on 
the system link to the malicious shared library. This means that 
when any future process makes a write system call, the system 
call wrapper in the malicious shared library will be called (see 
the malicious wrapper code in Figure 4).  

2) Offline Analysis Phase: The goal of the Analysis Phase 
is to discover state information of the surgical robot from the 
logged USB communication. From the publicly available 
documents on the RAVEN II robot (e.g., [12][16]), the attacker 
can infer that the state information (the robot can be in one of 
four states depicted by the operational state machine; see Figure 
1(c)) must be transmitted between the RAVEN control software 
and the USB I/O boards. The attacker performs an offline 
analysis on the USB packets (step 4 in Figure 3) collected from 
several robot runs—from initialization to the end of a 

teleoperation session—to identify fields in the USB packets that 
carry robot’s state information. 
 Since the attacker does not know the format of the USB 
packets, a simple approach to analyze them is to look at the 
values of the packets byte by byte over time to see whether there 
are patterns indicating a specific byte that may contain the state 
information. Figure 5(a) illustrates sample USB packets (values 
of the buf parameter for the write system call) collected in one 
run of the robot. Each subplot shows the value of each of the 18 
bytes over the course of a run. During this run, the RAVEN robot 
was teleoperated using the manipulators on a remote console.  
 By analyzing multiple runs, attacker can discover that Byte 
0 switches among 8 different values in a surgical run whereas 
other bytes either stay constant or switch between many values. 
For example, Figure 5(b) and Figure 5(c) show the enlarged plot 
of Byte 4 and Byte 0, respectively. A more detailed look at the 
values of Byte 0 reveals that the fifth bit toggles periodically 
between 0 and 1 (e.g., 0X0F toggles to 0X1F). If we take that bit 
out, then Byte 0 only switches among 4 values. Figure 6 shows 
the patterns of Byte 0 over nine different runs of the robot. Our 
further investigation into the RAVEN II specifications revealed 
that the fifth bit of Byte 0 might be the watchdog signal, a square-
wave signal toggling periodically between 0 and 1 to 
communicate the healthy status of the robot control software to 
the PLC safety processor [16].  
 Now, the attacker can combine this information with the 
knowledge that the RAVEN robot state machine navigates 
through 4 distinct states during a teleoperation. It begins from a 
stopped state (“E-Stop”), then upon hitting the start button, it 
performs an initialization process (“Init”), then moves to a 
standby state (“Pedal Up”), and during the surgical procedure, 
moves between the standby state (“Pedal Up”), and the 
operational state (“Pedal Down”) (see Figure 1(b)). Putting these 
two pieces of information together, the attacker can conclude, 
based on several runs of collected data, that Byte 0 most likely 
represents the state of the surgical robot and the values 31 (0x1F) 
or 15 (0x0F) in Byte 0 indicate that the robot is engaged and in 
operation (in the “Pedal Down” state). The red dashed lines in 
each subplot of Figure 6, highlight steps corresponding to the 
different operational states of the robot that can be inferred from 
this data. Similar analysis can be done on the data collected from 
the read system calls to eavesdrop on the feedback received 
from motor encoders (not shown here due to space limitations).  

3) Attack Deployment Phase: The goal of the 
Deployment Phase is to install a malicious code that triggers an 
attack on the RAVEN II robot when it is engaged in the middle 
of a surgical operation. Based on the offline analysis, the 
attacker can use Byte 0 as a trigger to determine when to 
activate an attack on the robot. There can be other triggers in 
addition to Byte 0, but Byte 0 can indicate when the surgical 
robot is in the operational (“Pedal Down”) state. Attacking the 
robot in other states may not have the desired malicious effect, 
e.g., in the “E-STOP” or “Pedal Up” states, the robot is not 
engaged and the motor brakes are applied, so no commands sent 
to the motors will be executed. 

The attacker modifies the write system call wrapper in the 
malicious shared library to perform an attack when Byte 0 (in 
the USB packets) indicates the “Pedal Down” state in the 
robot’s operation. The attack consists of modifying the values 

Figure 4. The malicious write system call loaded as a wrapper around the 
original write system call on the system. The dashed line shows the original 
program flow. The solid lines show the program flow after LD_PRELOAD is 
set to point to the malicious wrapper. 
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of other bytes in the USB packets, that represent the control 
commands sent to the USB I/O boards by the control software 
to drive the motors on the robotic arms.  

Previous assessment of the RAVEN control software by 
fuzzing the USB packets transferred between the robotic 
software and USB I/O boards revealed that the motor 
commands issued by the control software are checked before 
being sent to the custom USB boards (to make sure they do not 
exceed safety limits and the desired joint positions are not 
outside of the robot workspace). However, the integrity of the 
packets is not checked after the USB boards receive them. Since 
the USB I/O boards do not verify the integrity of the received 
USB data, a corrupted or incorrect motor command can pass to 

the motors causing the robot arm to move to an undesired 
location and potentially damage the system or harm the patient.  

Figure 4 shows the modified version of the wrapper. The 
attacker can deploy the modified shared library to any RAVEN 
machine using steps 1 and 2 in the Attack Preparation Phase 
(see Figure 3). Now, with every invocation of the write system 
call made by the RAVEN control software, instead of logging 
the USB communication, the malicious wrapper checks Byte 0 
of the buf parameter and automatically triggers an attack if Byte 
0 indicates that the robot is in the “Pedal Down” state.  

C. Attack Evaluation  

To asses the impact of the attacks on the progress of the 
surgery and the health of patient, we simulated the attacks on 
the write system calls in a surgical simulator for RAVEN II 
robot as well as on a real RAVEN II robot. By implementing 
the attacks on the simulator, we were able to verify the impact 
of the attacks before testing them on the actual robot, which 
prevents causing damage to the robotic arms and instruments.  

1) Impact on the Physical System: The corruption of 
packets sent by the control software to the USB I/O boards was 
achieved using malicious wrapper around the write system call 
to inject a random value (e.g., between 0 and 100) to one of the 
bytes (other than Byte 0). This corruption caused abrupt jumps 
of the robotic arms, leading both the RAVEN II software and 
hardware to go into the “E-STOP” state. In a few cases, the 
abrupt jump of robotic arms, caused the breaking of the cables 
on the robot. The visualization of this scenario in the simulator 
and on the actual robot is available in [19] and [24].  

This disturbance of the robot operation may lead to an 
interruption in the surgery, damage to the robotic instruments 
due to collision, or harm to the patient in the form of tearing or 

 

(a) 

 
(b) 

 
(c) 

Figure 5. The contents of packets transferred in one run of the RAVEN II robot from the robot to one of the USB boards (by calling write systems call). (a) 
Each subplot corresponds to a byte in the USB packets. (b) Byte #4 switches between many different values. (c) Byte #0  switches between 8 different values 
and if the fifth bit is taken out, it switches between 4 values corresponding to the four distinct states of the robot. 

“E-STOP”

 “Homing” 

 “Pedal Up” 

 “Pedal Down”

Figure 6. The values of Byte 0 in the packets transferred from the robot to 
one of the USB boards in a sample of nine different runs. The robot state 
(highlighted in red) can be inferred from the changes in the value of Byte0.
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perforation of tissues if the instruments were inside the body. If 
the malicious wrapper is loaded by setting the LD_PRELOAD 
in the bashrc file of the target user, the malware will be reloaded 
to the system on each run of the robot even after restarting the 
system. Consequently, the “E-STOP” condition would happen 
on every invocation of the system call and practically make the 
robot unavailable to the surgical team.  

As discussed in [25], in several safety incidents reported to 
the U.S. Food and Drug Administration (FDA), unexpected 
movement of robotic instruments due to accidental mechanical 
or electrical malfunctions or unintentional human errors (not 
malicious attacks) led to tearing or perforation of patient 
tissues, bleeding, and minor or severe injuries. Our results show 
that similar adverse incidents can be caused by malicious 
tampering with the robotic system and potentially harm patients 
or interrupt the surgical procedure without being identified as 
malicious activity.  

2) Impact on the Cyber Domain: We also measured the 
performance overhead of the malicious system call wrappers on 
the normal operation of the robot and other processes running 
in the system. Table II shows the performance overhead of the 
malicious wrappers, measured by the execution time of the 
write system call wrapper in the RAVEN control process. We 
collected measurements before and after installing the 
malicious library wrapper in 50,000 runs of the system call.  

The average execution time of the baseline write system call 
in the RAVEN process was around 1.3 microseconds. The 
malicious wrapper for logging the USB packets sent by the 
control software (including checking the process name and the 
file descriptor and sending the UDP packets to the remote 
attacker) on average added 18.7 microseconds to the execution 
time of the write system call in the RAVEN process. The 
malicious wrapper that injected the malicious bytes to the USB 
packets (including checking for the process name and file 
descriptor, checking the packet contents to determine if the 
desired robot state is reached, and overwriting the malicious 
value) added about 2.3 microseconds to the baseline write 
system call execution time. These overheads are within the 
timing constraints (1 millisecond) of the real-time process 
running the robot control software. So the malicious wrapper  
does not have any adverse impact on the performance of robot 
control and its effect would not be noticed by the human 
operators or users of the system.  

D. Why this Attack is not Easy to Detect? 
In the presented attack scenarios two important 

vulnerabilities allow the attacker to identify the critical time 
during robot operation and inject the malicious commands: (i) 
Linux dynamic loading feature for shared libraries and (ii) 
leaking of robot state information from the packets transferred 
between the robot control software and the USB I/O boards.  

Malicious shared library attacks or dll hijacking attacks 
have been around. However, the security community has not 
paid much attention to this type of intrusions, because to be 
successful, such attacks require access to the file system on the 
target machine or a remote shell access. Several recent reports 
on attacks to safety-critical cyber-physical systems show the 
existence of many vulnerabilities that allow remote malicious 
access. Table V shows the entry points and 
vulnerabilities exploited by the recent real attacks on the 
hospital networks and commonly used medical devices. Table 
III shows examples of recent zero-day vulunerablities in 
different operating systems allowing remote code execution, 
which could be used to download and setup the right scenarios 
for malicious shared library attacks.  

The malicious shared library attacks presented here cannot 
be easily detected in the cyber-domain by the existing malware 
detection techniques, because:  
1. Malicious actions are confined to the robot control 

software:  
a) no separate processes are created to run the malware. 
b) no system-wide malicious activities are performed 
c) the performance of target application is not affected 

2. No changes are made to the control flow of the target 
process. The functions in the shared library are invoked by 
the process following its normal execution flow. 

3. No anomaly in the syntax of robot control commands are 
introduced.  

Furthermore, the surgical robot puts rather stringent real-
time constrains on the system operation (e.g., in RAVEN II the 
operational cycle is 1 millisecond). The robot control loop plus 
any real-time detection and mitigation actions must complete 
within 1 millisecond to avoid potential deviation in system 
dynamics, leading to robot damage or patient harm. Traditional 
malware detection techniques (e.g., signature- or anomaly-
based and control flow checking), encryption  mechanisms 
(e.g., “bump-in-the-wire” (BITW) solutions [31][32]), and 
remote software attestation [33][34] may introduce significant 
overhead in the system operation and still not eliminate the 
possibility of TOCTOU exploits. In order to address this 
challenge, we develop dynamic model-based detection and 
mitigation mechanisms as discussed next.  

TABLE III. RECENT ZERO-DAY VULNERABILITIES  
ALLOWING REMOTE CODE EXECUTION OR PRIVILEGE ESCALATION 

Date
[Ref] CVE Vulnerability Affected 

Systems Impact 

Jul. 
2015 
[26] 

CVE-2015-5123 Flash Player 
Linux, 

Windows,  
OS X 

Gain administrator 
shell on target 

machine 
Jan. 
2015 
[27] 

CVE-2015-0235 
(GHOST) Glibc Linux Remote code 

execution 

Oct. 
2014 
[28] 

CVE-2014-4113 Privilege 
Escalation Windows Escalate to 

SYSTEM Privilege

Sep. 
2014 
[29] 

CVE-2014-6271 
(Shellshock) Bash shell 

Linux,  
Unix, 
OS X 

Remote code 
execution 

Aug. 
2015 
[30] 

CVE-2015-5783 OS X 10.10 Mac Gain root access 

TABLE II. PERFORMANCE OVERHEAD OF MALICIOUS SYSTEM CALL
 Time (μs) Min Max Mean Std. 

RAVEN 
Process 

Baseline System Call 0.9 12.7 1.3 0.2 
With Malicious Wrapper 

 Logging 7.9 38.1 20.0 7.5 
Injection 1.5 6.7 3.6 1.1 
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IV. DYNAMIC MODEL-BASED DETECTION AND MITIGATION 
In this section we describe the dynamic model-based 

analysis framework that we developed for (i) assessing the 
impact of attacks on the robot physical system and (ii) 
preemptive detection of the attacks and mitigating their impact 
before they manifest in the physical domain (see Figure 7). We 
validated the detection experimentally using two real attacks 
involving injection of unintended user inputs (scenario A) and 
unintended control motor torque commands (scenario B).  

The dynamic model allows us to determine the subsequent 
state of robot end-effectors and the motors incrementally based 
on the information on the current state and the real time input 
received from the RAVEN control software. The methods for 
modeling the serial chain robot manipulators and RAVEN II 
robot dynamics are well understood in the literature and we 
briefly outline them for completeness. What is important here 
is to ensure that the output of the dynamic model closely 
follows the actual robot movements in real-time so that the 
detection is performed accurately. 

To preemptively detect and mitigate the impact of attacks, 
the detection mechanisms need to dynamically estimate the 
consequence of executing a command on the physical system 
to ensure the final end-effector movements are within specified 
safety limits and within the workspace of the robot. There are 
two main challenges for implementing such monitoring 
mechanisms at lower layers of the control structure (e.g., at the 
interface device or the motor controllers): 
1) The detector needs to estimate: 

a. Next motor (mpos) and joints positions (jpos) that will 
be achieved upon executing a given DAC command. 

b. End-effector positions (pos) and orientations (ori) that 
result from those commands in the next control loop.  

If the estimated next joint position and end-effector position 
and ortientation values are beyond a safety limit (defined by a 
threshold value) from their current values, the DAC command 
should not be delivered to the motors and the robot should move 
to a emergency E-STOP state (see Figure 7(b)). Finding a 
solution to the above estimation problems requires modeling 
the dynamics of physical robot (motors and joint dynamics) for 
estimating the next motor and joint positions.  

2) The robotic control systems often face tight real-time 
constraints. For example, the RAVEN II control loop has a 
real-time requirement of receiving and processing each 
packet from the USB boards and sending the next control 
command to the motor controllers every 1 millisecond.  

Thus, any preemptive detection mechanism implemented at the 
software or software-physical interface layers should perform 
the dynamic state estimations within the real-time constraints 
imposed by the robot control design.  

A. Framework Overview 
Figure 7(a) shows the dynamic model-based simulation 
framework that we developed to assess the impact of the attacks 
on the physical system and validating the detection and 
mitigation mechanisms. The framework consists of:  

• A master console emulator that mimics the teleoperation 
console functionality by generating user input packets based 

on previously collected trajectories of surgical movements 
made by a human operator and sends them to the RAVEN 
control software. 

• A graphic simulator that animates the robot movements in 
real time by listening to the ROS topic generating the robot 
state and mapping robotic arms and instruments movements 
to CAD models of robot mechanical components in a 3D 
virtual environment. 

• A dynamic model of the RAVEN II physical system, which 
integrates the motor dynamics and robot manipulator 
dynamics together to model the physical system behavior in 
real time. 

• An attack injection engine which can create attack 
scenarios targeting different layers of robot control structure 
by injecting faults into the robot control software modules.     

1) Dynamic Model: We simulated the functionality of 
RAVEN II surgical robot by developing a software module that 
mimics the dynamical behavior of the robotic actuators. This is 
done by modeling the MAXON RE40 and RE30 DC motors 
used by the robot [12] as well as the robot manipulators (joints).  

As shown in Figure 7, this model is integrated with the 
RAVEN control software and can run with or without the 
physical robot. At each cycle of software control loop (shown 
in Figure 2) the model receives the same control commands 
(DAC values) sent to the physical robot (calculated based on 
the desired joint and motor positions for the next time step) and 
estimates the next motor and joint positions.  

The challenge in developing the model is to be able to 
perform estimations within the time constrains of the robot’s 
single iteration through the control loop. To reduce 
computational cost while maintaining the model accuracy as 
well as  the system real time guarantees, we model the robot 
manipulator dynamics using the first three (out of seven) 
degrees of freedom only (two rotational joints plus one 
translational joint). This is reasonable because the first three 
joints are positioning joints which contribute most to the 
instruments’ end-effectors’ positions, while the other four 
degrees of freedom are instrument joints, mainly affecting the 
orientation of the end-effectors. The model estimates the next 

(a) (b) 
Figure 7. (a) Simulation framework for assessment of the impact of attacks. 
(b) Dynamic-model based detection and mitigation mechanisms. 
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states of the first three motors and the corresponding joint 
states, including shoulder joint (rotational), elbow joint 
(rotational), tool insertion/retraction (translational) on one arm. 

Two sets of second-order ordinary differential equations 
were used to describe the dynamic model of the robot, including 
link (joint) and motor dynamics, similar to [35]. The robot 
mechanical properties, such as link mass, inertia, and center of 
mass location were obtained from the CAD models of the 
joints. The coefficients of these models were obtained via 
manual tuning based on [35], so that the dynamic model 
trajectory and the real robot trajectory are close.  

The 4th order Runge-Kutta and explicit Euler methods were 
used for calculating the solutions for these equations using the 
numerical integration solver (odeint) package in C++. We 
validated this dynamic model by comparing the operational 
trajectory of the RAVEN II robot with the corresponding trace 
generated by the dynamic model. Specifically, we measured the 
performance of the dynamic model in terms of the average 
estimation error and the required time for performing the 
estimation at each robot control cycle. Figure 8 shows the 
average run time and average motor and joint position errors for 
the 4-th order Runge Kutta and Euler solvers, by calculating the 
average of mean absolute errors estimated for each trajectory, 
over 10 different runs of model and robot together. As shown 
in the table, for the specific trajectories experimented here, the 
Euler technique with a step size of 1 millisecond provides us 
with the best trade-off between execution time and average 
trajectory error. The average execution time of 0.011 
milliseconds is within the timing constraint of 1 millisecond of 
the RAVEN control loop, which enables running of the model 
in parallel with the robot control software.  

Figure 8 also shows trajectories of the first three joints and 
motors when running the model (blue plot) in parallel with the 
physical system (red plot) and both receiving the same control 
input, calculated based on the encoder feedback from the real 

robot. As we see in the figure the model closely follows the 
trajectory of the actual robot. 

2) Attack Injection Engine: The core of the attack 
injection engine is a software implemented fault-injection tool 
that can be programmed to install wrappers around different 
system calls in the control software to create the attack 
scenarios shown in Table I. The attack injector can inject 
malicious inputs/commands with different values and 
activation periods to the control software at different times 
during a running trajectory (e.g., a surgical operation).  

B. Assessing the Impact of Attacks 
We used the dynamic model-based simulation framework in 

Figure 7(a) for assessing the impact of attack scenarios A and B 
by injecting a variety of unintended user inputs (malicious 
desired end-effector positions) and malicious motor torque 
commands to RAVEN control software. The simulation 
framework enabled us to assess the resiliency of the robot by 
performing thousands of injections without causing damages to 
the real robot. Representative fault injection experiments were 
repeated on the actual robot to validate the consistency between 
the robot and model behavior. We made the following 
observations by simulating these attack scenarios: 

1. Malicious torque commands that inject small errors to the 
DAC values do not have any impact on the robot state, unless 
they are activated for periods of larger than 64 milliseconds. 
If injected for shorter periods (e.g., 2-4 milliseconds), they 
can cause abrupt jumps in the motor velocities but the impact 
do not propagate to the next control loop and do not impact 
motor, joint, and end-effector positions, unless larger values 
are injected for longer periods. This is due to the fact that the 
PID controller inside the control corrects the errors in motor 
velocity and motor positions at each cycle of the control 
loop. Therefore, to corrupt the physical state of the robot, the 
attacker needs to keep injecting malicious values to the 
commands over a long enough period of time.  

2. The existing safety checks in RAVEN cannot detect the 
abrupt jumps resulted from malicious torque commands 
(injected after the software safety checks are done) until the 
physical system state is corrupted to a point where the PID 
control cannot fix the errors anymore. This is because: 
(i) these safety mechanisms only check the DAC commands 

calculated in software being sent to the robot by 
comparing it to a fixed threshold. They do not take into 
account the semantics of the control commands and their 
consequences in the physical system, i.e., impact of a 
DAC command on the state of the robot, motor positions 
and velocities, joint positions, and end-effector positions.  

(ii) the safety check are done at the latest computation step in 
the control software before sending the commands to 
physical system. Therefore, there is a TOCTOU gap, 
from the time the commands are checked to the time they 
are executed on the physical system, allowing attackers 
to target the system.    

C. Anomaly Detection and Attack Mitigation  
In order to preemptively detect the adverse impact of the 

attacks on the physical robot, we integrate the dynamic model-
based analysis framework with the robot control system, to 

Integration 
Method 

(Step Size:1 ms) 

Avg. 
Time/ 
Step 
(ms) 

Joint 1 
Avg. Error 

(% deg.) 

Joint 2 
Avg. Error  

(% deg.) 

Joint 3 
Avg. Error 

(%) 

mpos  jpos mpos jpos mpos
(deg)

jpos 
(mm) 

4-th Order 
Runge Kutta 0.032 115.0 

(2.4) 
0.9 

(2.4) 
178.1 
(1.5) 

1.8 
(2.0) 

181.9
(0.3) 

1.4 
(0.4) 

Euler 0.011 136.6 
(2.4) 

1.0 
(2.4) 

132.8 
(1.4) 

1.4 
(1.9) 

180.6
(0.3) 

1.3 
(0.3) 

 
Figure 8. Validation of dynamic model:  Trajectories generated by the 
dynamic model and the robot and average estimation error  
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estimate the consequences of control commands before they are 
sent to the motor controllers and are executed on the physical 
robot (Figure 7(b)). Our goal is to detect if a given command 
will cause an unsafe jump of more than 1 millimeter on the 
robot end-effector position within a short period of 1-2 
milliseconds (based on feedback from expert surgeons).  

We design an anomaly detection mechanism that intercepts 
the DAC commands sent by the RAVEN control software and 
estimates the values for the next motor velocities and positions 
and joint positions using the robot dynamic model in real time. 
The detector raises an alert whenever the estimated instant 
velocity and acceleration on the first three motors and joints 
(the difference between the estimated values for the next step 
and current values) are beyond a pre-defined safety threshold 
(defined as 1 millimeter jump on end-effectors). The thresholds 
used for detecting anomalies are learned through measuring the 
maximum instant velocities of each of the variables over 600 
fault-free runs of the model with two different trajectories 
containing sufficient variability in the movement. To eliminate 
the sensitivity of sample statistics to outliers and possible noise 
in measurements, we chose values between the 99.8–99.9th 
percentiles of instant velocity as the threshold for each variable. 
In order to reduce false alarms due to model inaccuracies and 
natural noise in the trajectory, the detector fuses the alarms 
based on the motor acceleration, motor velocity, and joint 
velocity and raises an alert only when all three variables 
indicate an abnormality.  

Table IV shows the performance of dynamic-model based 
anomaly detection mechanism compared to the existing 
detection and emergency stop (E-STOP) mechanisms in the 
RAVEN II robot in terms of detection accuracy (ACC), true 
positive rate (TPR), false positive rate (FPR), and F1-score 
(which is a unified measure of precision and recall). The results 
were achieved from 1,925 experiments simulating the attack 
scenario A and 1,361 simulation runs of the attack scenario B. 
Figure 9 shows the impact of attack activation period and 
injected error values in scenario B on the probability of adverse 
impact on the robot physical system (abrupt jumps of end-
effector positions) and probability of attack detection and 
mitigation by the dynamic-model based detection and the robot 
safety mechanisms. Each attack scenario with specific distance 
error and activation period was repeated for at least 20 times to 
achieve confidence in the probability estimates. The conditional 

probability of attacks given each injected error value v and 
activation period d was estimated by calculating marginal 
conditional probabilities from the measured data.   

Figure 9 shows that by injecting larger error values and 
increasing the activation period the probability of adverse 
impact on the physical system increases. Our dynamic-model 
based anomaly detection has higher probability of preemptively 
detecting the attacks before their impact manifests in the 
physical system than the RAVEN safety checks that only detect 
the impact after it has already happened. As shown in Table IV, 
the dynamic-model based detector could detect the simulated 
attacks scenarios with an averaged accuracy of 90% and average 
F1-score of 82%. For attack scenarios A and B, there were 
respectively 152 and 84 cases where the dynamic–model 
detected an abrupt jump on end-effectors while the RAVEN 
checks did not detect them. There were a total of 13 true cases 
(in scenario A) that our detector missed but RAVEN detected.  

The probability of RAVEN safety mechanisms in detecting 
and mitigating the adverse impact is always lower than the 
probability of adverse impact, i.e., the RAVEN safety checks 
cannot detect all the adverse scenarios. Thus, the attacker has a 
chance of causing an adverse impact on the physical system by 
carefully engineering injections with values that will not be 
detected by the robot for even short periods of 2-16 milliseconds 
(Figure 9(b)). But this chance is reduced when injecting larger 
error values for longer periods (of more than 64 milliseconds).  

Upon detection of potential adverse impact on the physical 
system, the impact of attacks can be mitigated by either 
correcting the malicious control command by forcing the robot 
to stay in a previously safe state or stopping the commands from 
execution and put the control software into a safe state (E-
STOP). The ideal location for insertion of detection and 
mitigation mechanisms are at lower layers of control structure 

 
(a) (b) 

Figure 9. Attack detection probability vs. injected error values and attack activation period 

Table IV. Dynamic-model based detection performance evaluation, 
compared to RAVEN detector 

Attack Scenario Technique ACC TPR FPR F1 

A 
(User inputs) 

Dynamic 
Model  

88.0  89.8  12.4  74.8  

RAVEN  84.6  53.3  7.7  57.8  
B 

(Torque 
commands) 

Dynamic 
Model 92.0 99.8 11.8 89.1 

RAVEN 90.7 81.0 4.6 85.1 
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and just before the commands are going to be executed on the 
physical robot. This will decrease the probability of TOCTTOU 
exploits by requiring attackers to compromise the hardware 
controllers which are harder to access compared to control 
software. In the RAVEN II robot, the last computational 
component before the motor controllers is the microcontroller 
inside the USB interface board. The implementation of the 
methods for calculating a numerical solution for the ODEs of 
the dynamic model might incur high computational costs in 
simple hardware controllers (e.g., an 8-bit AVR 
microcontroller with 128KB flash memory in RAVEN). One 
possible solution is to implement the parallel version of these 
estimation techniques on a custom trusted hardware module and 
run them concurrently with the robot control system.  

V. RELATED WORK 

A. Security of Teleoperated Surgical Robots 
Previous work on security of telerobotic surgical systems 

mainly focused on network and communication-based attacks. 
Bonaci et al. performed an experimental analysis of 

different cyber-security attacks on the communication between 
the surgeon’s console and the robot on a RAVEN II platform 
[8]. They evaluated the threats posed by attacks that modify or 
manipulate the intent of the surgeon or hijack control of the 
robot. They showed that causing the user input packets to be 
delayed or get lost in transit to the robot might lead to jerky 
motions of the robotic arms or difficulty in performing tasks by 
human operators. However, the modification of packet contents 
led the safety software to detect the over-current commands 
sent to the robot, stop the robot’s electrical and mechanical 
components, and prevent harm to the patient.  

Tozal et al. used an information coding approach to design 
a Secure and Statistically Reliable UDP (SSR-UDP) protocol 
that ensures confidentiality and reliability of telesurgical 
communications in wireless environments [5]. Lee et al. 
proposed Secure ITP, a security enhancement to the 
Interoperable Telesurgury Protocol (ITP), introducing 
Transport Layer Security (TLS) and Datagram TLS (DTLS) 
protocols for authenticating the teleoperation console and slave 
robot as well as the surgeon and patient [6].  

Most of the previous studies assumed that compromising a 
surgeon’s control console or the robot control system is less 

likely because physical access to the system is prohibited 
through strict monitoring [8]. Only Coble et al. studied the 
possibility of compromising the robot software in unattended 
environments, such as the battlefield. They proposed the remote 
verification of system software and configuration files before 
execution, using remote software attestation [34].  

B. Attacks on the Hospital Networks 
In this work, we assume that attackers exploit one of the 

existing vulnerabilities in the hospital networks as described in 
the previous work to get access to the telerobotic surgical 
systems, without being detected by regular security monitoring 
mechanisms, such as intrusion detection systems or remote 
software attestation techniques. Table V presents a summary of 
the recent reports on real attacks to hospital networks.  

For example, TrapX Security Inc. recently discovered three 
targeted attacks on a hospital’s network that passed through the 
protection of antivirus software, intrusion detection systems, 
and firewalls. In one case, the vulnerabilities in a blood gas 
analyzer was exploited to establish a backdoor to the whole 
hospital network, allowing the attackers to install a malware on 
the system and steal patient data records from the hospital. In 
another case, the attackers gained unauthorized access to a 
clinic workstation, by stealing credentials of an employee 
visiting a malicious website and installing a malware in that 
machine [10]. In another recent study on a wide range of 
medical devices in several hospitals, researchers from Essentia 
Health discovered that the internal firewalls used for protecting 
surgical robots from external connections might crash upon 
running a vulnerability scanner against them and enable 
unauthorized access to the robot [11]. In addition, there have 
been several recalls and adverse events reported to the FDA on 
random attacks on hospital networks in which malware or 
viruses infected medical devices such as imaging systems, 
causing interruptions in patient therapy [39][40].  

VI. CONCLUSION 
In this paper, we described the anatomy of targeted attacks 

against the control systems of teleoperated surgical robots. We 
demonstrated these attacks on the RAVEN II surgical robot and 
experimentally evaluated their impact on the operation of the 
robot control system and patients. Our results showed that the 
attacks can cause either sudden jumps of the robotic arms or 

TABLE V. POTENTIAL ENTRY POINTS TO GET ONTO A HOSPITAL NETWORK AND EXAMPLES OF REAL ATTACKS COMPROMISING THEM 

Attack Entry Points Description Examples of Real Attacks and Detected 
Vulnerabilities 

Ref. 
(Year)

Third party networks Hospital networks are often connected to third party laboratories, 
pharmacies, and vendor networks that, if compromised, can let 
data breaches or penetrations into the hospital networks as well. 

Two medical centers and more than 3.9 million 
individuals were affected by a data breach through a third 
party portal/personal health record platform.  

[36] 
(2015)

Computers used by 
physicians, nurses, or 
technicians  

The computers used by physicians, nurses, and vendor support 
technicians for remote access to the hospital network, could be 
compromised through credential stealing, virus, and malware. 

Email phishing attack compromised personal 
information of 3,300 patients. 

[37] 
(2015)

Vulnerable office 
devices 

Office devices such as network attached desktops, printers, 
faxes, scanners, and security cameras with default or weak 
passwords or vulnerable firmware could be an easy entry point. 

Default username/passwords for the multi-function 
printers and security cameras could be used for access to 
other devices on the hospital. 

[38] 
(2014)

Vulnerable or miss-
configured firewalls, 
access points, gateways 

Incorrect configurations in the Wifi access points or gateway 
machines could expose vulnerabilities or leak information, such 
as device ID or hospital network layout, to the public.  

Incorrect configuration of a gateway computer leaked 
critical information that made it possible for attackers to 
locate vulnerable devices within the hospital’s network. 

[9] 
[11] 

(2014)
Vulnerable medical 
devices 

Medical devices on hospital network may have default/weak 
passwords or unpatched software/firmware, which can be 
compromised.  

Three real-world attacks were detected, where a blood 
gas analyzer, a PAC system, and an X-ray machine were 
hijacked to open backdoors in hospital networks. 

[10] 
(2015)
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unavailability of the system due to an unwanted transition to a 
halt state in the middle of surgery. We presented defense 
mechanisms that combine understanding of the semantics of 
both software and physical components to predict the adverse 
consequences of attacks within the real-time constraints of the 
control system. The mitigation and assessment methods 
presented here can be applied to safety and security validation 
of a wider range of safety-critical cyber-physical systems. 
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