
  

  

Abstract—This paper presents a natural language processing 
(NLP) based cognitive decision support system that 
automatically identifies the status of a disease from the clinical 
notes of a patient record. The system relies on IBM Watson 
Patient Record NLP analytics and supervised or semi-
supervised learning techniques. It uses unstructured text in 
clinical notes, data from the structured part of a patient record, 
and disease control targets from the clinical guidelines. We 
evaluated the system using de-identified patient records of 414 
hypertensive patients from a multi-specialty hospital system in 
the U.S. The experimental results show that, using supervised 
learning methods, our system can achieve an average 0.86 F1-
score in identifying disease status passages and average accuracy 
of 0.77 in classifying the status as controlled or not. To the best 
of our knowledge, this is the first system to automatically identify 
disease control status from clinical notes. 

I. INTRODUCTION 

Electronic Health Records (EHRs) are the main source of 
information for assessment, diagnosis, and treatment of 
disease in clinical care. An EHR typically contains a patient’s 
historical health data, collected over several years of patient 
care. This data includes both physicians’ clinical notes written 
in unstructured text recording their observations, assessments, 
and plans, as well as structured data such as ordered 
medications, vital signs measurements, laboratory test results, 
and procedures conducted. 

With vast amounts of data being recorded in a patient 
record, manual retrieval of relevant information for a specific 
clinical task is challenging, often causing cognitive overload 
and inefficiency for physicians [1]. Various systems have been 
developed to support physician decision making by 
automatically generating clinical summaries [1][2][3], 
problem lists [4], and treatment performance measures [5] 
based on EHR data. An important insight that can be 
automatically extracted from EHRs and provided to a 
physician is the status of active problems. Such information 
can be used to assess the effectiveness of the ongoing 
treatment and to decide follow up actions. A longitudinal 
chronology of disease status can also be used to conduct 
detailed epidemiological studies leading to better population 
health policies and treatment strategies.  

Previous work on the prediction of disease status from 
EHRs mainly focused on using the structured data, identifying 
the presence or absence of  disease [6], or detecting assertions 
(e.g., hypothetical or historical) [7] from clinical notes. 
Structured data alone is not adequate for identifying disease 
status because a physician’s assessment that considers co-
morbidities, age, and other conditions is the most important for 
patient care. An automated information extraction system for 
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measuring congestive heart failure (CHF) treatment 
performance was reported in [5]. However, the system only 
extracted disease status measures, medications, and reasons 
for not receiving certain medications from clinical notes. 

In this paper, we present an NLP-based cognitive system for 
automated extraction of disease status using both unstructured 
and structured data in a patient record. The system identifies 
whether the patient status complies with disease-specific 
control targets for each visit. We use the IBM Watson Patient 
Record NLP analytics to extract mentions of a disease and its 
related test results from the clinical notes. This information, 
along with the vitals and test results recorded in the structured 
data of the patient record, is then used as features in a machine 
learning model that classifies the status of the disease in each 
clinical note (i.e., for each visit) as “Unknown”, “Controlled”, 
or “Not Controlled”.  

For evaluating the system, we specifically focused on 
hypertension, as an example of a chronic condition, which 
affects about 70 million adults (29%) in the United States [8]. 
The data was collected from 414 de-identified EHRs of 
hypertensive patients in a major multi-provider U.S. hospital 
system. Our dataset included 5,035 candidate snippets of text, 
which potentially discussed hypertension status, extracted 
from over 55,000 clinical notes. Of these, 2,086 snippets were 
manually labeled and all the data was also automatically 
labeled based on rules applied to blood pressure measurements 
recorded in the structured data. In addition to supervised 
learning algorithms trained on manual and automated labels, 
we adapted a semi-supervised method called co-training to 
expand our set of manually labeled training data with 
additional 2,949 unlabeled examples. The experimental results 
show that, using supervised learning, our system achieves an 
average F1-score of 0.86 in identifying disease status mentions 
in the clinical notes and an accuracy of 0.77 in classifying the 
mentioned disease status as “Controlled” or “Not Controlled”.  

II. SYSTEM DESCRIPTION  
The disease status chronology is determined by creating a 

timeline of disease status, in which for each patient visit the 
status of disease is classified as “Unknown” (“NA”), 
“Controlled” (“C”), or “Not Controlled” (“NC”), based on the 
evidence in the patient record. Disease status chronology can 
provide a summary of disease progression over time by 
highlighting transitions between “Controlled” and 
“Uncontrolled” states. For example, multiple transitions 
between “Controlled” and “Uncontrolled” states can reveal a 
less stable condition compared to a patient who mostly stays 
in a “Controlled” state. This can be used as a measure of 
treatment performance, indicating which changes in the 
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treatment plan have been most effective over time. Figure 1 
shows the overall structure of our cognitive system for 
identifying disease status, and details are described next.  

A. Disease Status Evidence Extraction  
The disease status can be potentially inferred from one of 

the following sources in a patient record: 
• Mentions of the disease in a clinical note, typically in the 

“Assessment and Plan” section, for example: 
“HTN: Continue Present Meds” 
“HTN is well controlled” 

• Mentions of the disease-related laboratory tests or vital 
signs measurements in a clinical note, for example: 

“BP is still remaining high” 
“Started to use home BP machine” 

• Related diagnostic test results or vital signs recorded in the 
structured data, for example: 

Blood Pressure 160/80 
Examples from a patient record for these sources is shown 

in Figure 1. Note that some of the textual mentions, such as 
“started to use home BP machine” do not inform whether the 
disease is controlled or not.  

We use Watson Patient Record NLP analytics components 
including sentence segmentation, medical concept annotation, 
note section classification, labs/vitals extraction, and relation 
detection, to identify the snippets of text related to disease 
status within the clinical notes. Specifically, we extract 
sentences containing the mentions of disease (e.g., HTN or 
hypertension) and related vitals and diagnostic test results 
(e.g., BP or blood pressure) in the “Assessment and Plan”, 
“Chief Complaint”, “History of Present Illness”, and 
“Diagnosis and Finding” sections of “progress” notes. The 
piece of text starting from one sentence before to one sentence 
after the sentence containing the mention of disease or test 
result is recorded as a candidate snippet for identifying disease 
status.  

The vital sign measurements and lab results are retrieved 
from the structured data sections of a patient record and the 
Watson relation detection component is used to identify those 
that are related to a specific disease (e.g., BP is a vital sign 
related to hypertension). We identify the vitals and test results 
related to a clinical note based on the common encounter IDs 
and dates on which the measurements were made and notes 
were written. Specifically, we search for the related vital signs 
measured within a period of three days before and after a 

clinical note date and identify the vitals with the same 
encounter ID or with the closest date distance to the note.  

B.   Disease Treatment Goals Extraction 
We extract disease-specific control targets from the 

standard clinical guidelines (e.g., JNC VIII for 
hypertension [9]). These treatment goals are converted into a 
set of logic rules based on the patient demographic features 
(e.g., age, gender, ethnicity, pregnancy status) and diagnostic 
test results (e.g., blood pressure measurements). These rules 
can be executed by a reasoning engine in real-time to 
determine the disease status relative to the control targets 
solely based on the structured data.    

C. Feature Extraction 
 The extracted disease evidence and treatment goals are 
assembled into a set of features used by the machine learning 
algorithm. The following are the key features that were 
selected for constructing our model: 
Control term frequency: Based on a review of 150 clinical 
notes (a very small subset of the total), we manually identified 
a few patterns that describe the disease status (see Figure 3). 
From these patterns, we developed pattern matching rules 
using regular expressions, parse tree pattern matching, 
mentions of the disease, and a dictionary of 11 ‘disease status’ 
seed terms (e.g., controlled, uncontrolled, high, low, and 
suboptimal) to identify the disease status in candidate snippets. 
However, the accuracy of the rule-based approach was low 
(micro average F1-score of 0.38), as it was highly dependent 
on the set of terms and patterns included in our dictionary, but 
it formed the baseline for our experiments (see Table I). 

We further expanded the disease status seed terms by 
finding similar terms using word embeddings (word2vec 
models [10]) pre-trained on three separate corpora: clinical 
notes from all EHRs from the hospital system; i2b2 
database [11]; the Google News data [12]. The final lexicon of 
disease status consisted of 519 terms that appeared in a similar 
context to the seed terms with a similarity score of 0.40 or 
better. Figure 3(b) shows examples of the highest scored terms 
in the lexicon. One interesting observation is that misspellings 
of seed control terms (e.g., ‘controled’ and ‘postive’) are 
automatically detected and included in the lexicon. 

The standard term frequency (TF) metric is used to compute 
a feature vector representing the frequency of each disease 
status term in a text snippet of a clinical note.  

 
Figure 2. Overall system structure  

 

(a)  

(b)  

(c)  
Figure 1. Three types of disease status evidence in an EHR: (a) mentions 
of disease in unstructured notes, (b) mentions of vital sign measurements 
in unstructured clinical notes, and (c) structured vital sign measurements 

 
 



  

Test result mention frequency: The disease-related vital 
signs in a text snippet are identified using regular expression 
patterns (e.g., ‘BP’ or ‘blood pressure’ mentioned before a 
numerical value: ‘BP 160/80’). The frequency of such 
patterns in a text snippet is encoded as a feature in the model. 
Structured test result status: The status of disease control 
targets (e.g., blood pressure within limits or abnormal and 
high) are generated by the logic rules executed on the related 
vital sign measurements. This status (“NA”, “C”, or “NC”) is 
used as a binary feature vector representing the structured test 
results status in one experiment, and as automatically 
generated labels for training the machine learning models in 
a separate experiment, as described next.  

D. Ground Truth Generation 
Typically, clinical text classification tasks are done using 

supervised learning algorithms trained on previously labeled 
data created by medical experts. So, we manually labeled a 
subset of candidate snippets and used this as the main ground 
truth for supervised training and testing of our classifiers. 
However, given the large number and size of notes in a patient 
record, manual labeling of data is not only expensive, but also 
prone to errors due to possible mistakes or inconsistencies 
among annotators. This often results in generation of data sets 
that are of limited size and thus difficulty in achieving 
satisfactory generalization for classifiers. To address this 
challenge, in addition to the manually generated labels, we 
also automatically labeled all the data based on the disease 
status inferred from blood pressure measurements in the 
structured data. This is done based on the assumption that there 
is agreement between the disease status evidence in the 
unstructured clinical notes and the structured sections of a 
patient record. However, when vital sign measurements 
(structured evidence on disease status) are present, there is no 
guarantee that any mention of the disease status is also present 
in the related clinical note. So, it makes sense to only use the 
automatically generated labels for cases where disease status 
evidence is known to be present in a clinical note (and in the 
structured data) and perform “C” vs. “NC” classification.  

In addition, we adapted a semi-supervised training method 
called co-training to increase the size of the labeled training 
data. Co-training requires different classifiers trained on two 
different feature sets that provide independent but 
complementary views of the data. These two classifiers are 
both trained on a labeled data set and then train each other by 
iteratively labeling new samples from a large set of unlabeled 

data and adding the identically labeled new samples to the 
labeled training set [13].   

E. Model Generation 
We first experimented by creating a supervised classifier 

trained on manually generated labels with different models, 
including Naïve Bayes, Decision Trees, and Support Vector 
Machines (SVM), as well as ensemble methods such as 
AdaBoost and RandomForests. Our analysis using a 10-fold 
cross-validation scheme, showed that the SVM model with 
linear kernel achieved the best trade-off between model 
performance (F1-score) and complexity among the classifiers, 
so we used SVM in all of the following experiments.  We also 
found that two levels of binary classifiers (“NA” vs. “C/NC”, 
and “C” vs. “NC”) achieves a better performance compared to 
one ternary classifier (“NA” vs. “C” vs. “NC”). We developed 
the following classifiers (also see Table I): 

Classifier 1 – Unstructured features and manual labels: 
This classifier extracts features from the unstructured clinical 
notes and is trained and tested on manually generated labels.  
Classifier 2 – Structured features and manual labels: This 
classifier uses the disease status based on the structured data 
as the only feature vector and is trained and tested on 
manually generated labels.  
Classifier 3 – Unstructured features and automated labels: 
We used automatically generated labels for training the third 
classifier, which uses only the unstructured features. This 
binary classifier was only used to classify the samples that 
were known to have an indication of disease status (were not 
in “NA” class) to label them as a “C” or “NC” class. 
Classifier 4 – Co-training of classifier 1 and classifier 2: 
This classifier used co-training by leveraging classifiers 1 and 
2, which use distinctly different (i.e. unstructured and 
structured) features. We initialized classifiers 1 and 2 by 
training them on manually generated labels. In the first 
iteration, 50 random samples from unlabeled data were 
selected and labeled by the classifiers. Then, five “NC” and 
five “C” samples which were identically labeled by both 
classifiers were added to the labeled data set. In subsequent 
iterations, we randomly picked 10 samples from the unlabeled 
data and continued the co-training process until no more 
samples were left in the unlabeled data set.  

III. RESULTS AND DISCUSSION 
Our dataset was composed of 414 patient records in which 

hypertensive disorder was mentioned as one of the main 
problems in the problem list. The raw data included 55,000 
clinical notes with an average of about 133 notes, collected 
over an average of 7.2 years, per patient. After extracting the 
disease evidence from the clinical notes, our dataset consisted 
of 5,035 candidate snippets, from which 2,086 were manually 
labeled and the rest (2,949) were used as an unlabeled set for 
semi-supervised learning. The labeled data set consisted of 
743 “NA” samples, 931 “C” samples, and 412 “NC” samples.  

Table I shows the performance of the classifiers in terms of 
average F1-score calculated over ten 10-fold cross-validation 
experiments (i.e., 100 runs). Except classifier 4, all other 
classifiers were evaluated by comparing their results against 
the manually generated ground-truth. For each classifier, we 
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Figure 3. (a) Disease status patterns in clinical notes, (b) Examples of 
‘disease control’ terms and their scores 

 

positive	(0.73),	bad	(0.72),	
wellcontrolled (0.69),	
terrific	 (0.69),	elevated	(0.67),	
poor	(0.67),	negative	(0.67),	
unacceptable	 (0.65),	
poorer	(0.65),	fantastic	(0.64),	
controled (0.62),	
postive (0.61),	lack	(0.6),	
abysmal(0.6),	controlled	(0.59),	
tolerable	 (0.59),	poorest	(0.59),	
negatively	(0.59),	solid	(0.58),	
permissible	 (0.58),	lousy	(0.58),	
neg (0.58),	satisfactory	(0.57),	
wonderful	(0.57),	tough	(0.56),	
terrible	 (0.56),	controls	(0.56),	
highest	(0.56),	woeful	(0.56),	
appropriate	(0.56),	best	(0.55)



  

report the precision, recall, and F1-score for the positive class 
(requiring intervention) and the overall accuracy, which is the 
fraction of samples labeled correctly out of all of the test 
samples. As shown in Table I, classifier 1 achieves the best 
F1-score of 0.86 (average) in identifying snippets that contain 
any indication of disease status (“C/NC”). This classifier can 
classify “C” and “NC” classes with an average accuracy of 
0.77, but it can identify the “NC” class with an F1-score of 
0.46 only. In both cases, we see much improvement versus 
the rule-based method (with F1-scores of 0.22 and 0.19).   

The results for classifier 2 show that by only using the 
evidence from structured data, the F1-score for identifying 
disease status snippets (“C” or “NC”) drops to 0.78, but we 
can achieve 14% higher performance for identifying the “NC” 
classes (0.60). The lower F1-score for “NA” vs. “C/NC” 
classification might be due to disagreement between mentions 
of disease in the notes and measurements collected in the 
structured data. For example, we found that for 461 candidate 
snippets, there were blood pressure measurements in 
structured data from which the hypertension status could be 
inferred, but no mention of disease status was present in the 
candidate snippet. Further, using both structured and 
unstructured features (classifiers 1 + 2), achieved similar 
results as classifier 1. 
 The classifiers 3 and 4 were only applied to identifying “C” 
vs. “NC” states (1,343 samples). By using the automated 
labels generated based on structured vital signs, in classifier 3 
we observed a decrease in accuracy (0.54) compared to using 
manual labels in classifier 1, but the recall score improved 
compared to all other classifiers. This could be partly due to 
the disagreement between manual and automated labels. The 
overall Cohen-kappa-score for agreement between these 
labels was 0.53. This might be due to the fact that mentions 
of disease status in the clinical notes are concluded by the 
physician based on the observations on the overall state of the 
patient, including structured measurements, prescribed 
medications, patient-specific goals for the disease, other 
active conditions, or even social factors. For example, we 
observed many candidate snippets where the hypertension 
targets (blood pressure thresholds) have been set differently 
from the standard thresholds in the clinical guidelines. 
However, the agreement between labels was more consistent 
for “NC” (0.66) than “C” (0.42) samples, which might be the 
reason for higher recall and F1 scores in classifiers 2 and 3. 

In the co-training method, we first used classifier 1 to label 
and filter “NA” samples in the unlabeled data set. Then, using 
co-training we increased the size of the labeled data set (from 
1343 to 2300) by adding 957 new samples (834 “C” and 123 
“NC”) that were consistently labeled by both classifiers 1 and 
2. However, the F1-score when the classifier 1 was trained on 

co-trained labeled data did not change compared to when it 
was trained on the original manually labeled data set. Our 
analysis of the learning curve of classifier 1 showed that the 
model training was saturated by the 1343 training samples, 
and so the new labels did not provide further improvement. 

IV. CONCLUSION 
We presented an NLP-based cognitive system for 

automated extraction of disease status from electronic health 
records. A chronology of disease status instances can provide 
disease progression over time and a measure of treatment 
performance to assist physicians in clinical decision making. 
Our system extracts disease-related evidence from both 
unstructured clinical notes and structured patient record data 
to infer the disease status at each visit. We investigated the 
use of semi-supervised techniques for generating machine 
learning models to decrease the need for manual ground truth 
generation. Automated label generation based on structured 
data decreased the overall accuracy of our system because of 
disagreements between structured and unstructured data. Co-
training using unstructured and structured models showed 
potential feasibility for automatically increasing the size of 
training data in clinical text classification tasks, but did not 
improve the performance. Further investigation into methods 
for automated generation of labeled data and feature selection 
are the subject of future work. 
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TABLE I  PERFORMANCE OF CLASSIFIERS 
  “C” vs. “NC” “NA” vs. “C/NC” 

Classifier Features Ground Truth for Training “NC” Class Accuracy “C/NC” Class Accuracy 
Precision Recall F1 Avg. Std. Precision Recall F1 Avg. Std. 

Baseline Rule-based 
Manual labels  
(Unstructured data) 

0.59 0.11 0.19 -- 0.64 0.13 0.22 0.39 - 
Classifier 1 Unstructured data 0.79 0.33 0.46 0.77 0.04 0.91 0.82 0.86 0.83 0.03 
Classifier 2 Structured data 0.55 0.66 0.60 0.73 0.04 0.64 1.00 0.78 0.64 0.03 
Classifiers 1+2 Unstructured and Structured data 0.78 0.35 0.47 0.76 0.03 0.91 0.82 0.86 0.83 0.02 
Classifier 3 Unstructured data Automated (Structured data) 0.42 0.72 0.52 0.54 0.08     
Classifier 4 Unstructured data Co-training (Classifiers 1 and 2) 0.83 0.30 0.43 0.75 0.02     

 


