
Facilitating Testability of TLM FIFO: SystemC Implementations

Homa Alemzadeh
1
, Marco Cimei

2
, Paolo Prinetto

2
, Zainalabedin Navabi

1

1
CAD Research Group

ECE Department, University of Tehran

 Tehran 14399, Iran

{homa, navabi}@cad.ut.ac.ir

2
Dipartimento di Automatica e Informatica

Politecnico di Torino, I-10129 Torino, Italy

s133891@studenti.polito.it

paolo.prinetto@polito.it

Abstract

TLM is a high-level approach to modeling digital

systems with an emphasis on separating computations

from communications within a system. With the

evolution of design methodologies to transaction level

the need for definition of DFT (Design for Test)

techniques at this very high level of abstraction arises.

This paper focuses on the implementation of three

different high-level testing strategies for TLM FIFO as

the basic TLM communication channel. These

strategies are implemented by adding Built-in

Functional Self Test (BIFST) utilities to the channels

and computation units. We present SystemC

implementations of the utilities that we have developed

in the form of new SystemC classes and methods.

1. Introduction

With the increasing complexity of digital systems,

and shrinking time to market, Electronic System Level

(ESL) design has emerged as the main design

methodology for implementing large digital systems.

The evolution of ESL design methodologies has

introduced Transaction Level Modeling (TLM). TLM is

a transaction-based modeling approach, originally

based on high-level programming languages such as

C++ and SystemC, which emphasizes on separating

communication from computation within a system. In

the TLM notion, communication mechanisms are

modeled as abstract channels accessed resorting to

interface functions [1].

Contrary to the migration of design methodologies

from gate and register transfer levels to higher

abstraction levels such as TLM, testing and testability

techniques are still mostly performed at lower

abstraction levels. It is thus gaining importance for

system level designers the introduction of DFT

techniques to insert testability features directly at TLM

level in a completely automatic way, without

concerning themselves with the intricacies of lower

level implementations.

In [2] we introduced a testing methodology

applicable at the TLM level during the system level

design phase. We proposed our test techniques that can

be applied to the design even before hardware/software

partitioning, and we focused on TLM communication

channels. In the present paper we present the SystemC

implementations of different TLM Testing Strategies

introduced in [2].

The paper is organized as follows: Section 2 has an

overview on the TLM Testing Methodology presented

in [2]. Section 3 provides the SystemC Implementation

for three proposed TLM testing strategies, and finally

Section 4 concludes the paper.

2. TLM Testing Methodology

This section presents an overview of the proposed

high-level TLM testing methodology proposed in [2].

In [2] we took the preliminary steps toward

definition of DFT at TLM abstraction level by

developing a testing methodology during the system

level design phase, before hardware/software

partitioning with a focus on TLM communication

channels. Since the only possible and reasonable testing

strategy at a very high abstraction level like TLM is

functional testing, we provided a design methodology

capable of defining functional tests at TLM abstraction

level, to be later on automatically translated into Built-

in Functional Self Test (BIFST) facilities in the final

product. These BIFST facilities are added into each

computation unit and the communication channel in the

TLM design and can be later synthesized either into

hardware or software according to the designer’s

choices and needs. Figure 1 shows the proposed test

architecture of [2] in which each of the computation

units (Writer and Reader) and the communication

channel are modified to include the required BIFST

facilities.

978-1-4244-9556-6/10/$26.00 ©2010 IEEE

Channel
Test Facilities

Writer Reader

BIFST-able
Channel

Channel

WR Test
Facilities

RD Test
Facilities

Figure 1 TLM Test Architecture [2]

Three different testing strategies are considered in

this architecture. These are: Transaction Testing, Self

Testing, and Integration Testing. Each of these testing

strategies can be implemented by definition of the

involved blocks in test procedure and implementing the

required facilities in them. The BIFST units added

inside computation units and the communication

channels include Test Data Generators (TDGs), Test

Response Evaluators (TREs), Test Controllers, and

Interfaces [2].

The proposed architecture is a general architecture

for implementing different testing strategies and a

designer can have his/her own test approach and

implementations for the added facilities. In the next

section we present the SystemC implementations of

BIFST facilities and the TLM definition of BIFST-able

tlm_fifo, as the most basic TLM primitive channel in

TLM Library, based on the FSM model test approach

presented in [2] and [3].

3. SystemC Implementations

In the test architecture of Figure 1 the

implementation of TDG and TRE units correspond to

the definition of both test cases and test oracles for all

the TLM methods of the communication channel under

test. Test Oracles are the set of operations needed to

check the correct execution of test cases. These

operations include the comparisons to check the state of

the channel and values returned to outside, as well as

methods to be performed during the test procedure in

order to put the channel in the required working states

and prepare it for test execution [3].

Our overall idea is to define, for each method of

tlm_fifo primitive channel, based on its FSM model, a

suitable functional test sequence. In particular, we

generate the test cases for each tlm_fifo method by

trying to stress it in different operational states,

satisfying the transition coverage criterion [3]. Table 1

shows the test sequences for three methods of FIFO

(put(), nb_put(), and nb_can_put) implementing

WRITE functionalities. Test cases for all other methods

of tlm_fifo have been generated in a similar way.

The SystemC implementation of these test

sequences will be different according to the chosen

testing strategy. In the following subsections we see

SystemC implementations of the proposed BIFST

facilities for three different strategies introduced in

Section 2.

Table 1 - Test Sequences for tlm_fifo Methods

(Write Functionalities)

put() # nb_put() # nb_can_put()

1  put() 1 nb_put() 1 nb_can_put()

n-1  put() n-1 nb_put() 1 put()

1  put() 1 nb_put() 1 nb_can_put()

1 get() 1 get() n-1 put()

1 get() n-2 get() 1 nb_can_put()

n-2 get() 1 get() n+1 get()

1 get() 1 get() 1 nb_ can_put()

1 get() 1 nb_ put() 1 put()

1  put() 1 peek() 1 peek()

1 peek() 1 nb_ put() 1 nb_ can_put()

1  put() 1

get()

1 put()

1 get() 1 get()

3.1. Transaction Testing Implementation

Transaction testing strategy includes testing the

transactions between channel and computation units

independently. This can be done for testing Write

Transactions or Read Transactions by checking the

correct functionality of the interconnection between the

Writer/Reader and Channel without using the other side

Reader/Writer. Figure 2.a and b show the

implementation of Write and Read Transaction tests in

the architecture of Figure 1.

Writer Reader

BIFST-able
Channel

ChannelController

Interface

WR
TDG / TRE

FIFO
TDG / TRE

(a)

Writer Reader

BIFST-able
Channel

Channel Controller

Interface

RD
TDG / TRE

FIFO
TDG / TRE

(b)

Figure 2 Transaction Testing:

(a) Write Transaction (b) Read Transaction

This strategy has several advantages. First of all

the “writing” and “reading” functionalities of the

channel can be easily tested autonomously (e.g., testing

the writing functionalities does not require the reader to

be involved). The reader and writer are not

concurrently involved in the test, and their related

activities do not need any ad-hoc timing. Each of them

has the responsibility of testing the methods of the

channel actually used. The main drawback of this

approach is that the communication channel and the

computation units have to be modified to include the

test facilities which lead to an overhead.

In this test strategy, each single block receives

external requests concerning the beginning of the test

phase. Then the corresponding computation unit

(Writer/Reader) waits until the communication channel

becomes ready for performing test. After this, the

Transaction Test mode is activated for the

communication channel and the test sequence starts by

applying generated test cases into the channel. Since

only the Writer/Reader and that part of the channel that

is responsible for Writing/Reading are participating in

performing a Transaction test, the communication

channel should emulate the other side’s functionality by

calling the methods internally. For example the put()

functions check-marked in the first column of Table 1

are test transactions issued by the Writer. But the get()

and peek()s should be emulated inside the FIFO. As

shown in Figure 2, for testing Write Transactions the

TRE unit of channel performs test oracles by

responding to the test transactions issued by the Writer;

and for testing Read functionalities the TDG unit of

Reader generates test cases, TREReader plays the role of

Test response evaluator, and TREFIFO performs

operations for moving FIFO between the required

working states.

The generated test cases and Oracles are added

into SystemC description of Writer, Reader and the

Channel. We implement the new SystemC class of

testable_tlm_fifo which inherits from tlm_fifo and

overrides all the FIFO methods to include BIFST

facilities inside [2]. The functions which are going to

be emulated internally by FIFO are defined as new

TLM methods in the new BIFST-able version of

tlm_fifo. These methods are started with “t_” indicating

the “Test” version of each method and include:

t_nb_peek(), t_compare(),t_get(), t_put(), and t_peek().

The first two functions are used in the implementation

of comparison oracles for checking the values and

states. The t_nb_peek() method is a non-blocking test

method which always nb_peek() the most recently

written element to the FIFO. Its difference with

nb_peek() is that it is called internally from the FIFO

and reads the most recently element instead of the first

one. The t_compare() method is for comparing the test

response (value and state of FIFO) with the fault-free

reference model of FIFO. The t_get(), t_peek(), and

t_put() methods are implemented by calling the original

get(), peek() and put() methods [2], respectively.

//put()

template <typename T>

inline

void

testable_tlm_fifo<T>::put(const T& val)

{

00 //Test Mode

01 if (m_N_Tmode == true){

02 //Full: Unblock Writer Thread

03 if (!tlm_fifo<T>::nb_can_put())

04 fifo_full_event.notify(

 SC_ZERO_TIME);

05 }

06 //Normal Operation

07 tlm_fifo<T>::put(val_);

08 wait(0,SC_NS);

09 //Test Mode

10 if (m_N_Tmode == true){

11 //Before FIFO becomes Full

12 if (m_test_num <= m_size)

13 {

14 in >> TestData;

15 t_compare(t_nb_peek(),TestData);

16 m_test_num++;

17 }

18 //Before FIFO becomes Empty

19 else if (m_test_num == m_size+1)

20 {

21 //Peek and Compare the MRW

22 in >> TestData;

23 t_compare(t_nb_peek(),TestData);

24 //Get until FIFO Empty

25 while(tlm_fifo<T>::nb_can_get()

26 {

27 x = t_get();

28 }

29 //EMPTY: Unblock Reader Thread

30 fifo_empty_event.notify(

 SC_ZERO_TIME);

31 wait(1,SC_NS);

32 }

33 //FIFO is Empty

34 else if (m_test_num == m_size+2)

35 {

36 in >> TestData;

37 t_compare(x, TestData);

38 //Back to Unblock Reader Thread

39 wait(1,SC_NS);

40 }

41 else if (m_test_num == m_size+3)

42 {

43 in >> TestData;

44 t_compare(x, TestData);

45 x = t_get();

46 }

47 } }

The class definition of testable_tlm_fifo including

the header of the new overridden methods, threads, new

test methods, and data types is presented in [2]. In

Figure 3 the SystemC descriptions for overriding the

Figure 3 SystemC Description of Overridden put() Method

in testable_tlm_fifo

put() method as an example of implementing the test

sequence of Table 1 is shown. The Writer issues the

test transactions to the FIFO by calling this overridden

put() method and FIFO responds to them by running

the function of Figure 3. The deterministic test data are

fed from an input file which is shared between TDG

and TRE units (e.g. in >> TestData in Line 14). The

m_N_Tmode (Lines 1 and 10) indicates the Test mode

and the m_test_num variable is for counting the steps of

the test sequence. Two threads, called unblock_writer

and unblock_reader, are defined for testable_tlm_fifo

to provide parallelism to FIFO [2]. They enable

continuing the sequence of actions when the FIFO is

blocked to perform a blocking TLM function and

cannot continue the sequential code of its put() method.

These threads are activated by notifying their

corresponding events from put() method (Lines 4, 30,

39).

3.2. Channel Self-Testing Implementation

Channel Self-Testing Strategy tests a channel as an

isolated component, without consideration of its

connection to the Writer and Reader. In this strategy

only the FIFO needs to be modified. The reader and

writer are not involved in the test and do not have any

information about the topology of the system. The

drawback of this approach is the overhead of modifying

the communication channel to include the proposed

BIFST facilities.

The implementation of this strategy is done by the

definition of TDG and TRE units and the test controller

inside tlm_fifo. A new SC_THREAD called t_self_test

is described inside the testable_tlm_fifo SystemC

description and is initiated by activating the Self Test

mode from outside the FIFO. This thread performs the

test sequences for each method of tlm_fifo. The tlm_fifo

methods generated in test sequences of Table 1 are

replaced by their “t_” versions and are called internally

with the same ordering inside the FIFO.

3.3. Integration Testing Implementation

The last strategy is for testing the integration

between Writer, FIFO and Reader. In the Integration

Testing strategy, FIFO always runs in its normal mode

and is not involved in the test procedure. The reader

and writer are concurrently responsible for performing

tests by some external synchronization and timing

considerations. Both the reader and writer should be

aware of the topology of the communication channel to

which they are connected and need a protocol for being

synchronized with each other.

This strategy is implemented by definition of

TDGWriter and TREReader units for testing Write

functionalities and TDGReader and TREWriter units for

Read methods. Also we need to define the

synchronization protocol and the test controller.

The generated test cases and test oracles are added

into the SystemC description of Writer and Reader and

the test control is implemented by using ok_to_put(),

ok_to_get(), ok_to_peek() methods of FIFO and wait()

statements which enable the synchronization between

Writer and Reader. Figure 4 shows part of a SystemC

code implementing the TREReader and Reader Controller

for the put() method test procedure. Before performing

any response, the Reader waits for FIFO to complete

the execution of put() transaction issued by the Writer.

This is done by using ok_to_get()/ok_to_peek()

methods which notify an event whenever a write is

done inside the FIFO. In other words, the SystemC

codes of the body of the overridden methods in

Transaction Testing implementation, here in Integration

Testing are used as portions of codes between

wait(ok_to_get())/wait(ok_to_peek())s. The

implementation of the other side unit (TDGWriter) is the

same as Transaction Testing strategy and consists of a

sequence of put() invocations.

//Reader TRE

. . .

while (nb_can_put()){

 wait(ok_to_peek());

 nb_peek(val_, m_num_readable-1);

 tr_compare(val_, TestData[i]);

 wait(SC_ZERO_TIME, NS);

}

. . .

Figure 4 SystemC Description for TRE in

Write Transaction Test Strategy

4. Conclusions

In this paper we focused on SystemC

implementations of testable_tlm_fifo for three different

TLM Testing Strategies introduced in [2]. The

proposed SystemC implementations can be used as

DFT rules in the process of TLM design.

5. References

[1] T. Grötker, S. Liao, G. Martin, S. Swan, System

Design with SystemC. Springer, 2002, Chapter 8, pp.

131.

[2] H. Alemzadeh, S. D. Carlo, F. Refan, P. Prinetto, Z.

Navabi, “Plug & Test at System Level via Testable

TLM Primitives,” To appear in Proc. of International

Test Conference (ITC’08), Pre-prints Available at:

http://orion.polito.it/~dicarlo/plist/ITC08.pdf

[3] H. Alemzadeh, S. D. Carlo, A. Scionti, P. Prinetto, Z.

Navabi, “Functional Testing Approaches for “BIFST-

able” tlm_fifo,” To appear in Proc. of IEEE

International High-Level Design Validation and Test

Workshop 2008.

