
Research Article
Surgeon Training in Telerobotic Surgery via a
Hardware-in-the-Loop Simulator

Xiao Li,1 Homa Alemzadeh,2 Daniel Chen,3 Zbigniew Kalbarczyk,3

Ravishankar K. Iyer,3 and Thenkurussi Kesavadas4

1Department of Mechanical Engineering, University of Illinois, Urbana, IL 61801, USA
2Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22903, USA
3Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
4Department of Industrial and Enterprise Systems Engineering, University of Illinois, Urbana, IL 61801, USA

Correspondence should be addressed to Xiao Li; xiaoli16@illinois.edu

Received 6 January 2017; Revised 4 April 2017; Accepted 14 May 2017; Published 3 August 2017

Academic Editor: Qing Shi

Copyright © 2017 Xiao Li et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims
are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing
commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors
in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly
introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with
a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to
help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety
hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to
provide feedback to the operator when the underlying dynamics differ from the real robot’s states so that the operator will be
aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal
path in an interactive robotic surgery training environment.

1. Introduction

The field of surgical robotics has been rapidly expanding over
the last decade [1]. Robot-assisted surgery is the preferred
technique for a variety of minimally invasive procedures
worldwide. Simulation-based learning and training is now a
standard in robotic surgery because healthcare professionals
improve performance and reduce errors through compre-
hensive medical care simulation [2, 3]. Simulation can bridge
the gap in learning robotic surgery skills without accidentally
harming the patient. For example, LapSim Haptic System™ is
a laparoscopic surgery simulator with realistic hardware
interface and tactile feedback, which is mainly used for
near-field nonteleoperated surgery training [4]. Other com-
mercial surgical simulators on the market such as Mimic’s
dV-Trainer™ [5] and Simulated Surgical System’s RoSS [6]

provide basic motor skills training modules using virtual
reality with surgeon console similar to the da Vinci surgical
system, to provide life-like simulation and help prepare sur-
geons. Figure 1 shows these simulators’ profiles. A key issue
with simulation-based surgical training is the lack of safety-
critical incident scenarios in simulation-based curricula,
which is critical in bringing this form of surgical education
to practice. Current surgical simulators focus on better
graphics rendering and curriculum of goal achievement
(success in arriving at goals while ignoring intermediate
motion patterns) rather than real robot dynamics motion
as well as teaching the surgeon optimal motion pattern
and path in an obstacle-surrounded environment.

Our previous study of adverse events reported to the U.S.
Food and Drug Administration (FDA) Manufacturer and
User Facility Device Experience (MAUDE) database showed

Hindawi
Journal of Healthcare Engineering
Volume 2017, Article ID 6702919, 13 pages
https://doi.org/10.1155/2017/6702919

https://doi.org/10.1155/2017/6702919

that despite significant improvements in robotic surgery
technology through the years and broader adoption of the
robotic approach, there are ongoing occurrences of safety
incidents that negatively impact patients. The number of
injury and death events per procedure has stayed relatively
constant since 2007, with an average of 83.4 events per
100,000 procedures [7]. Although, these incidents are often
caused by accidental malfunctions or technical problems
with the robot and steep learning curves, it has also been
shown that surgical robots can be subject to malicious
cyber-attacks that impact patient safety and progress of sur-
gery [8, 9]. The ability of current robotic surgery technology
to automatically mitigate the impact of safety incidents still
lags other safety-critical industries, such as commercial avia-
tion. In such industries, great effort has been spent over the
years on improving safety practices by providing compre-
hensive simulation-based training that includes operation
in the presence of safety-critical failures [10]. In current
robotic surgeon training, the emphasis is on improving surgi-
cal skills and not on handling safety-critical events and
responding to technical problems. Adverse events or acci-
dental machine failures are rarely used as potential scenarios
for safety training of surgical teams.

In this work, we are motivated by the idea of simulating
safety hazards [11, 12] during robotic surgery training in
order to prepare surgeons for handling safety-critical events.
The objective is to develop a hardware-in-the-loop simulator
platform that emulates realistic safety hazard scenarios in a
virtual environment and provides awareness of the impeding
hazards to the operator through haptic force feedback. In this
work, we use Raven-II [13] surgical robot as the hardware
that the operator will be trained with. Previous studies have
shown that users trained on the Raven platform can transfer
their skills to da Vinci system [14]. We developed a robot-
environment interaction model using a physics engine as
the robot’s nominal state estimator (fault-free run), which
runs simultaneously with the Raven-II robot hardware. We
also developed a safety hazard injection engine that inten-
tionally and artificially creates adverse events by inserting
faults into the robot control system using Software-
implemented Fault Injection (SWIFI) [15]. The faults are
injected to the control software after the system’s automatic
safety checks are performed to increase the chance that they
cause safety hazards.

The main goal of SWIFI is to validate the effectiveness of
fault-tolerance mechanisms by studying system behavior in
the presence of simulated faults. Here, we use software-
based fault injection techniques to emulate the safety hazards

and enable evaluation of human operator performance and
response to safety hazards during simulation-based training.
Fault injection and cyber-attacks on the safety-critical sys-
tems, such as smart grid [16–18], automotive embedded sys-
tems [19], and robotic vehicles [20, 21], have been the subject
of many studies. They presented attack scenarios that directly
target the physical system, the control commands sent to the
physical system, or the sensor measurements received from
the physical layer to corrupt the state of controller in the
cyber-domain (false data injection attacks). In this work, we
use fault injection and target the robot control system to cor-
rupt the control commands in a legitimate manner that is not
detectable by the robot’s safety mechanisms. In our previous
work, we showed that these injections could lead to unex-
pected and sudden jumps of the robotic arms and negatively
impact the robot operation and patient safety in just a couple
of milliseconds, making it difficult for both automated mech-
anisms and human operators to respond in a timely manner.
Thus, the detection and response mechanisms in real-time
surgical cyber-physical systems should be optimized and
deployed in such a way that can mitigate the impact of faulty
and malicious commands before they even execute in the
physical layer [8].

In [22], authors demonstrated content modification
attacks on a bilateral teleoperation system and used
Lyapunov-based analysis to conclude that if the sent velocity
does not equal to the position’s derivative, then there is a
static attack (linear modification of the states using time-
invariant gains). Their method however might suffer from
sensitivity to model accuracy, since all analysis is based on
model-based Lyapunov analysis. Providing the user with
haptic cues using the haptic force calculated based on the dif-
ference between desired and actual position of end-effectors
in the slave robot was proposed in [23]. Teleoperation for
Raven robot uses Interoperable Telerobotics Protocol
[24]—sending incremental rather than absolute motion
command from master to slave and a human operator is in
the control loop to correct the position errors. In transient
phase, there is tracking error between the actual slave robot
end-effector position and the desired position; therefore,
comparing the two to generate the haptic feedback cannot
be done accurately. We address this issue by developing a
dynamical model for the physical robot (a virtual robot) as
the underlying state monitor. The model and robot receive
the same motion command from the master, and we use their
state difference to create the haptic feedback.

When training a novice surgeon, he/she can acquire some
sense of optimality by observing or sensing (through haptics)
the robot’s execution of an automated task. The motion can
be planned optimally by minimizing certain cost functions.
Related work in this area focuses on automating some of
the real surgery scenarios in different robot-assisted surgery
types. Weede et al. in [25] introduced an autonomous camera
system including a prediction of interventions, to provide a
long-term prediction of the steps a surgeon will perform in
the next few minutes and move the endoscope to an optimal
position. Combined with vision techniques, automatic posi-
tioning and autonomous retrieval of surgical instruments
have been achieved in [26, 27]. Chow et al. in [28] showed

Figure 1: From left to right: LapSim haptic system, dV-trainer,
and RoSS.

2 Journal of Healthcare Engineering

that vision-guided autonomous knot-tying in robotic-
assisted surgery has the potential to be faster than human
performance. Kehoe et al. in [29] demonstrated the first
reliable autonomous robot performance of surgical sub-
task, that is, removing tissue fragments using Raven, by
generating centralized motion plans through 3D sensing
and trajopt, a low-level motion planning algorithm based
on sequential convex optimization to plan locally optimal,
collision-free trajectories simultaneously for both arms. Hu
et al. in [30] investigated path planning and semiauto-
mated motion for the scenario of robotic ablation of
tumor residues in various shapes using Raven robot, and
different metrics were delivered to the surgeon to select
candidate path plan. In nonlaparoscopic type of robotic
surgery, for example, in needle steering community, efforts
have been made in surgical preplanning for the needle
type surgical robot [31, 32] and demonstrated in simulation
environment [33].

In this work, we present a comprehensive software
framework for the telerobotic surgical simulator. The simula-
tor includes a failure scenario generation module which
simulates failures during a surgery through fault injections.
These failure scenarios can train surgeons to recognize
adverse events during a surgery through haptic cues. The
optimal trajectory generated by Fast Marching Tree
(FMT∗) algorithm designed for Raven-II platform at an
interactive rate will also help trainee gain an optimal sense
of manipulating the surgical instrument.

2. Materials and Methods

2.1. Simulator Framework. We design the simulator system
based on the Raven-II surgical robot, an open source plat-
form running on top of Robot Operating System (ROS). To
develop a surgical simulator with high fidelity in reproducing
adverse events, we include the robot hardware in the simula-
tor’s execution loop and integrate it with a safety hazard
injection engine [8] and a physics engine to simulate the
robot dynamics and interaction with environment. The
simulator system architecture is shown in Figure 2.
Raven-II is a teleoperated surgical robot which uses network

communication between the local machine on surgeon’s con-
sole side and the remote Raven computer. The simulator runs
on the local machine and performs dynamics and collision
calculations. Two Phantom Omni devices receive the incre-
mental motion command from the operator and then send
the data to both the local machine and the remote machine
through UDP/IP. A virtual Raven robot and 3D training
environment are displayed on the screen of surgeon’s con-
sole. The graphics are rendered through C++ OpenGL pipe-
line with a frequency of 30Hz, while other calculations, for
example, haptic loop and physics engine and network data
transmission, using multiple threads are being synchronized
and run at 1000Hz, which is the same as the running fre-
quency of Raven’s control loop.

The connection between the Surgeon Console and the
Raven-II system is bilateral network communication in our
hardware-in-the-loop simulator shown in Figure 2. One
direction is for transmitting Omni command data from the
local machine to the remote Raven system, while the other
direction is for sending the robot state data (joint positions
and velocities) back to the local machine using TCP/IP socket
connection for reliability and to make comparison with the
dynamics calculation results in physics engine thread. The
haptic force feedback is provided to the operator if the virtual
and real Raven’s end-effector trajectories do not match
(above a predefined threshold). Since perfect transparency
(master device force/torque matching the slave’s end-
effector force/torque) is not possible and is especially chal-
lenging for teleoperators with significant nonlinear dynamics
and no force sensors mounted at the robot end-effector, we
utilize haptics feature for safety propose, rather than for sur-
gical palpation. Because the haptic device sensor/actuator
asymmetries can cause instability and robustness issues, we
apply a spring-damper model with appropriate gains and sat-
urations for feedback force calculation.

To simulate the safety hazards in real surgery, we inte-
grate the robot control software with a safety hazard injec-
tion engine that strategically inserts faults into the control
software at critical junctures during operation [8]. More
explicitly, the injected faults corrupt either the Omni com-
mands or the motor control commands sent to the Raven

Surgeon console

Foot
pedal

Virtual training
environment

Real surgical �eld

Surgeon

Haptic feedback Hand motion

Master UI
so�ware

Local
communication

Simulator so�ware
I/O data processing
Collision detection

Dynamics calculation
Graphics rendering

Path planner

Local
machine Network

communication

Robot computer
and control boards

Motor encoder
measurements

Motor
control

Stereo vision feedback

Remote Raven-II system

1

2

Figure 2: Hardware-in-the-loop surgical simulator architecture.

3Journal of Healthcare Engineering

hardware after the safety checks are done in the Raven soft-
ware in robot computer, which is indicated in Figure 2. As
a result, unexpected robot motion will generate trajectory
errors compared with the underlying model dynamics. Then,
we show how the operator can gain awareness of the errone-
ous robot trajectory in the presence of faults through haptic
force feedback.

Beyond the capability of basic motor skills training and
simulating adverse events, there are additional features in
our simulator that can help improve the surgeon’s perfor-
mance in real surgery. For example, in some scenarios, it is
preferable to let the surgeon do a virtual trial, rather than
manipulating the actual robot all the time. One of the
important capabilities of our simulator is to allow the user
to disengage from the actual robot to do a trial movement
in the simulator’s virtual environment and see the outcomes
of virtual motion. If the outcome is satisfactory, then the
actual robot could be reengaged to track the recorded com-
mand trajectory data and move in an autonomous fashion.
The user can also use the path planner to specify the target
configuration of the robot arm, and then it will automatically
generate trajectory waypoints for the robot arm to track. A
foot pedal is placed on the surgeon’s side to enable switching
between the robot teleoperation mode and pure simula-
tion mode (being disengaged from the robot hardware)
and also toggling the view between the real surgical field
and virtual environment.

2.2. Robot Dynamics Modeling and Training Scenario. In
our previous work, we simulated dynamics, numerically
integrating the equations of motion derived by Euler-
Lagrange (E-L) approach in [34]. This approach provides
very little freedom for simulating interactions with the envi-
ronment. In this work, we integrate a physics engine—Open
Dynamics Engine (ODE) into the simulator, to simulate
dynamic behaviors of the robot and interactions between
the robot manipulators and the environment. ODE is an
open source, high-performance library, which relies on a
Linear Complementary Problem Solver (LCP solver) [35].
In robotics simulation, ODE is being widely used for a
variety of applications [36, 37].

In [34], we obtained the equations of motion by E-L and
determined the mechanical properties of the links through
CAD models. In ODE setup, we directly specify each link’s
mesh properties and joint properties, so that we can achieve
the same robot motion as in [34] (with no collisions).
Besides, ODE has the capability of doing collision checking
between primitive objects or meshes and using contact fric-
tion models to apply contact forces, which gives the possibil-
ity of simulating interactions.

For the training scenario, we use the training model
which is widely used in the Fundamentals of Robotic Surgery
(FRS) organization, the definitive robotic surgical skills edu-
cation, training, and validated assessment program [38]. The
objectives of using the training model can be found in [38].
Specifically, in our simulator prototype, we made a small
modification to the original model (extruded cut half of the
top lid) so that the Raven robot arm can be inserted into
the cavity to perform the tasks, that is, picking up a cube ring

initially placed inside the cavity. The operator will manipu-
late the robot arms to get used to 3D teleoperation by picking
up a ring, transferring it from one arm to the other, and nav-
igating the ring along the loops. The abovementioned motor
skills training scenarios can be done in a semiautonomous
fashion using the Fast Marching Tree- (FMT∗-) based path
planner (if only involved one arm motion, dual arm motion
case can be split into one arm motion followed by another).

2.3. FMT∗-Based Path Planner. The path planner utilizes
FMT∗ algorithm, in which “∗” indicates optimality to given
cost criteria. An on-off foot pedal is used to activate the path
planning functionality. In planning mode, the user is
required to use the master device controlling the slave robot
in the simulation environment to reach a target configura-
tion. In this phase, collision detection is disabled and just
pure kinematic motion is performed. Once the path planner
got the goal configuration, it will start to compute dynami-
cally feasible trajectory and execute the motion plan for the
arm at interactive rates (only a few seconds for planning
and executing motion plans, resp.).

The cavity in the FRS training model is used to simulate
the human abdomen (Figure 3), where the inside volume is
very constraint and, thus, requires very fine motions of the
robot end-effectors. It is preferable to make the surgical
instruments (robot arms) automatically inserted or retrieved
before or after the surgical procedure. Raven-II robot has two
instrument arms that are independent of each other in terms
of assembly and controls, and each has seven degrees of
freedom (DOF) and six rotational joints plus one transla-
tional joint. In high-dimensional space, sampling-based
path planning algorithms can explore the configuration space
effectively by sampling the collision-free configurations
according to a probability distribution (in this work, uniform
sampling in feasible joint space is used). Rapidly exploring
random tree (RRT) and probabilistic roadmap method
(PRM) and their variants have become prevalent in robot
path planning applications and literature over the past ten
years, especially when the RRT∗ and PRM∗’s optimality
proofs was formally given in [39]. In [39], it is shown that

Figure 3: Simulated surgeon console and FRS training
model—yellow sphere on each arm indicates the fixed remote
motion center, and the cavity of the dome represents a human
abdomen area; more details of the model can be found in Figure 7
and Figure 8.

4 Journal of Healthcare Engineering

PRM∗ and RRT∗ are provably asymptotically optimal, that is,
the cost of the returned solution converges almost surely to
the optimum. However, building the RRT tree or connect-
ing PRM edges require extensive collision checking. In our
case, collision checking between triangle meshes will
severely hurt the performance. Recently, a new probabilistic
sampling-based planning algorithm called Fast Marching
Tree (FMT∗) was introduced [40]. The algorithm is specifi-
cally aimed at solving complex motion planning problems
in high-dimensional configuration spaces. This algorithm is
proven to be asymptotically optimal and is shown to con-
verge to an optimal solution faster than its state-of-the-art
counterparts, namely, PRM∗ and RRT∗. However, the sacri-
fice is that it lazily skips collision checks when evaluating the
local connections. This lazy collision checking strategy may
introduce suboptimal connections, but the crucial property
of FMT∗ is that such suboptimal connections become van-
ishingly rare as the number of samples goes to infinity. In
both low- and high-dimensional benchmark problems tested
in [40], which across a variety of problem instances, ranging
in obstacle clutter and in dimensions from 2D to 7D, it is
shown that FMT∗ outperforms state-of-the-art algorithms
such as PRM∗ and RRT∗, often by a significant margin.
The speedups are particularly prominent in higher dimen-
sions and in scenarios where collision checking is expensive,
which is exactly the regime in which sampling-based algo-
rithms excel. In this work, we utilize the advantages of FMT∗

algorithm to achieve the goal of motion planning and exe-
cuting tasks.

2.3.1. Assumptions. In designing the path planner using
FMT∗ algorithm, we make the following two assumptions:

(1) Decoupling between control and joint motion. The
Raven-II robot uses cable-driven mechanisms, so
the joint motion of the instrument arms are not
only affected by one DC motor. The closer to the
end-effector, the more complicated coupling motion
would involve. In our ODE simulation environment,
we do not model the cable coupling behavior, and
we assume each actuator will control one joint
motion only.

(2) Fixed opening angle for the grasper. Each grasper
consists of two jaws and, thus, has two DOFs. We
can think of jaws as two independent DOFs or con-
sidering them as one part, and then it has one DOF
as the center line of the grasper, another DOF would
be the opening angle of the grasper, and these two
representations are kinematically equivalent. In some
cases, when the grasper is holding some object
(e.g., holding the cube ring in our training scenario),
we do want to keep the opening angle unchanged. So
in our path planner, we only consider six DOFs,
instead of seven.

2.3.2. Problem Statement. As mentioned above, in this work,
we consider motion planning problem for one arm, either
left arm or right arm, because the case of dual arm planning

problem can be treated as moving the arms one by one.
This simplification will reduce the computation cost tre-
mendously. The motion planning problem of Raven-II sur-
gical robot in a surgical training environment can be stated
as follows:

(i) Inputs: surgical environmentΨ and Raven-II robotℜ
described by mesh file objects, initial robot configura-
tion θinit for the moving arm (collision-free) when the
path planning is enabled, goal robot configuration
θgoal for the same arm (collision-free) specified by
the user, n number of collision-free configurations,
and rn connection radius

(ii) Output: a feasible collision-free motion plan con-
sisting waypoints Θ for one arm trajectory and each
waypoint is a 6-dimensional vector including 6
joint positions.

Note that motion between two intermediate waypoints is
dynamically feasible and free of collision. And if no path
exists between start and end configurations, the algorithm
terminates in finite time.

2.3.3. FMT∗ Algorithm. We consider this planning problem
for one robot arm. The planning objective is to find a dynam-
ically feasible collision-free path while minimizing the overall
cost function:

J σ∗ =min η1 ⋅ c σ + η2 ⋅
T

0
α t 2dt, σ is feasible ,

1

inwhichσ is a feasible path in joint space, c σ is the arc length
of σwith respect to Euclideanmetric, α t is the end-effector’s
linear acceleration, and η1,  η2 are two user-defined coeffi-
cients to weight the effects of path length and velocity var-
iations. The FMT∗ algorithm is outlined in Algorithm 1.

The description of the functions (e.g., SampleFree, Near,
and Save) in the FMT∗ algorithm are described in [40]. In
surgical planning, we should make sure that when connect-
ing two waypoints on the path, no collision happens and
the end-effector’s velocity is smooth, that is, there is no jerky
motion on the robot joints. So for evaluating the connected-
ness of two waypoints, rather than simply do linear or
nonlinear interpolations as the kinematics level test, we
integrate the robot dynamics with ODE and use it as the
prediction to test whether by moving from one configuration
to another as collision happens. This is the most expensive
part of our implementation.

Similar to RRT∗ and PRM∗, FMT∗ also requires to
explicitly specify radius when considering neighboring sam-
ples to achieve asymptotic optimality, which is given by the
(3) in [40]. So we can write

rn = γ
log n
n

1/d
, 2

for some positive γ. In our implementation, we normalized
all joint positions in the range of [0, 1] to do uniform

5Journal of Healthcare Engineering

sampling. Then compute a conservative bound of γ using
Monte Carlo simulation in order to find the d-dimensional
Lebesgue measure of collision-free configurations with
respect to all possible configurations.

Before trying to obtain collision-free samples, a decision-
making module will determine which arm is supposed to
move and call the corresponding FMT∗, because the two
arms are slightly different in terms of transformations and
kinematics chain [41].

Under this path planning with robot dynamics frame-
work, joint controls at each time step can also be obtained
as a byproduct of doing collision checking when trying to
connect two samples. After a feasible path is computed, we
can either apply the joint controls explicitly at each time
step or through feedback control to execute the plan as a
trajectory following problem. Since the first option is open
loop, the error could accumulate over time. So, we will use
PD controllers for each joint to track the desired trajectory
in joint space when executing the motion plan autono-
mously in the simulator and send the joint positions to
the Raven computer via internet if real robot motion is
also needed to perform.

2.4. Spring-Damper Model for Haptic Force Feedback. In this
section, we present the haptic force feedback mechanism.
The use of haptic devices in teleoperated surgical robots

has the potential of providing both cutaneous (tactile)
and kinesthetic (force) information during exploration or
manipulation of an object or environment. To the best of
the authors’ knowledge, even the latest commercial surgical
system (da Vinci Xi) does not have haptic feedback feature.
In robotic surgery, haptic feedback is useful in teleoperated
palpation [42, 43]. Beyond this application, we expect that
haptic feedback also can provide extra but crucial informa-
tion to the operator about the status of the system when some
uncertain events happen and before the errors are accumu-
lated to some degree that the system is taken to an emergency
stop. For human perception, our haptic rendering loop in the
simulator also runs at 1000Hz, otherwise, the user may
perceive force discontinuities and a loss in fidelity [44].

We send the ROS published joint states in the Raven
computer to the simulator through the network. From the
physics engine (ODE) thread, we extract the joint velocities.
We compute the end-effector velocities by using spatial
manipulator Jacobian transformation:

v ω T = Jθ ̇ 3

The end-effector position is computed through the for-
ward kinematics chain for both the robot and the model
using the joint positions, as shown in

p = f θ , 4

where f indicates the forward kinematics chain of the
robot [41]. Then, the haptic force provided to the operator
is given by

F =
Kp pmodel − probot + Kd vmodel − vrobot
0 05,  if pmodel − probot > tol

5

And the force direction applied to the haptic device is
given by

d = pmodel − probot
pmodel − probot

6

In this setup, if an adverse scenario happens, or the robot
moves in an unexpected way, the haptic device will provide
haptic cues to the operator. This provides awareness of
impeding hazards, enabling the operator to take action or
correct the robot behavior based on the internal model of
the simulator.

2.5. Safety Hazard Injection. The Safety Hazard Injection
engine in our simulator uses software-based fault injec-
tion techniques to recreate safety hazards observed during
real surgical procedures. This enables evaluation of sur-
geon performance and response to safety hazards and
prepares them for the best response actions to take in
case of incidents.

Based on our preliminary review of almost 1500 accident
reports on the da Vinci surgical system from the FDA
MAUDE database, we identified three categories of common
safety hazard scenarios as shown in Table 1. We simulate
these scenarios by injecting faults into the Raven control
software during the training scenarios. The possible causes

1. if θgoal ∈ Χf ree
2. V← θinit ⋃SampleFree n  E←∅
3. Vunvisited ←V θinit Vopen ← θinit , Vclosed ←∅
4. z← θinit
5. Nz ←Near V z , z, rn
6. Save Nz , z
7. while z ≠ θgoal do
8. Vopen,new ←∅
9. Θnear =Nz⋂Vunvisited
10. for θ ∈Θnear do
11. Nθ ←Near V θ , θ, rn
12. Save Nθ,  θ
13. Ψnear ←Θnear ⋂Vopen
14. ψmin ← argminψ∈Ψnear

J ψ + Cost ψ, θ
15. if CollisionFree ψmin, θ  then
16. E← E⋃ ψmin, θ
17. Vopen,new ←Vopen,new ⋃ θ
18. Vunvisited ←Vunvisited θ
19. J θ = J ψmin + Cost ψmin, θ
20. end if
21. end for
22. Vopen ← Vopen⋃Vopen,new θ
23. Vclosed ←Vclosed⋃ θ
24. if Vopen =∅ then
25. return Failure
26. end if
27. θ = argminψ∈Vopen

J ψ
28. end while
29. return Path θ, T = Vopen ⋃Vclsoed , E
30. end if

Algorithm 1: FMT∗.

6 Journal of Healthcare Engineering

T
a
bl
e
1:
T
hr
ee

co
m
m
on

sa
fe
ty

ha
za
rd

sc
en
ar
io
s,
w
it
h
co
rr
es
po

nd
in
g
ex
am

pl
es

fr
om

re
al
in
ci
de
nt
s
re
po

rt
ed

to
th
e
FD

A
M
A
U
D
E
da
ta
ba
se
.

Sa
fe
ty

ha
za
rd

sc
en
ar
io

(o
ut
co
m
e)

U
ns
af
e
co
nt
ro
la
ct
io
n

ex
am

pl
e

P
os
si
bl
e
ca
us
al
fa
ct
or
s

(a
cc
id
en
ta
lf
ai
lu
re
s)

R
av
en
-I
I
si
m
ul
at
io
n

Im
pa
ct
(c
lin

ic
al
sc
en
ar
io
s

fo
r
sa
fe
ty
tr
ai
ni
ng
)
[e
xa
m
pl
e]

T
ar
ge
ts
of
tw
ar
e
m
od

ul
e

T
ar
ge
t
va
ri
ab
le
s

Sy
st
em

te
m
po

ra
ri
ly
un

av
ai
la
bl
e

(r
ec
ov
er
ab
le
sy
st
em

er
ro
r)

A
us
er

co
m
m
an
d
is

pr
ov
id
ed

bu
t
no

t
fo
llo
w
ed

by
th
e
ro
bo
t.

Im
pr
op

er
op

er
at
or

ac
ti
on

s
or

co
ns
ol
e
co
nt
ro
lm

al
fu
nc
ti
on

s
N
et
w
or
k-
la
ye
r
th
re
ad

(n
et
w
or
k_
la
ye
r)

U
se
r-
de
si
re
d

R
es
ta
rt
th
e
sy
st
em

[M
A
U
D
E
32
93
51
9]

T
ro
ub

le
sh
oo
t
er
ro
r

co
nt
ac
t
m
an
uf
ac
tu
re
r

(i
)
P
os
it
io
n

(i
i)
O
ri
en
ta
ti
on

(i
ii)

G
ra
sp
er

an
gl
e

(i
v)

Fo
ot

pe
da
l

Sy
st
em

pe
rm

an
en
tly

un
av
ai
la
bl
e

(n
on
re
co
ve
ra
bl
e
sy
st
em

er
ro
r)

A
m
ot
or

co
m
m
an
d
is

pr
ov
id
ed

by
th
e
ro
bo
t

co
nt
ro
l,
bu

t
it
is
no

t
fo
llo
w
ed

by
th
e
m
ot
or
s.

Se
ns
or

(e
nc
od

er
)
fa
ilu

re
C
on

tr
ol

th
re
ad

(g
et
_U

SB
_p

ac
ke
t)

U
SB

bo
ar
d

C
on

ve
rt
th
e
pr
oc
ed
ur
e

[M
A
U
D
E
26
63
92
4]

R
es
ch
ed
ul
e

[M
A
U
D
E
32
75
50
0]

(i
)
A
dd

re
ss

(i
i)
R
et
ur
ne
d
st
at
us

U
SB

bo
ar
d

R
ep
or
t
to

m
an
uf
ac
tu
re
r

(i
)
A
dd

re
ss

(i
i)
R
et
ur
ne
d
st
at
us

U
ni
nt
en
de
d
m
ov
em

en
to
fr
ob
ot
ic

ar
m
s
(s
ud

de
n
ju
m
p)

A
co
m
m
an
d
is
pr
ov
id
ed

by
th
e
ro
bo
t
co
nt
ro
lt
o
m
ot
or
s

w
hi
le
th
e
ca
lc
ul
at
ed

ne
xt

po
si
ti
on

is
at

la
rg
e
di
st
an
ce

(b
ig
ju
m
p)

fr
om

cu
rr
en
tp

os
it
io
n.

A
ct
ua
to
r
fa
ilu

re
s

C
on

tr
ol

th
re
ad

(p
ut
_U

SB
_p

ac
ke
t)

C
om

m
an
ds

to
ro
bo
tj
oi
nt
s

P
un

ct
ur
e
of

ar
te
ry

[M
A
U
D
E
15
90
51
7]

B
le
ed
in
g
of

ut
er
in
e
tu
be

[M
A
U
D
E
21
20
17
5]

7Journal of Healthcare Engineering

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=3293519
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/detail.cfm?mdrfoi__id=2663924
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=3275500
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=1590517
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=2120175

of hazards may include accidental faults in robotic hardware
or software, unintentional human operator errors, or inten-
tional malicious attacks to the control system of the robot.
For each safety hazard, Table 1 shows the potential accidental
causes (column 3) and impact on patients and surgical team
(column 5) based on representative examples from the real
incidents reported to the FDA MAUDE database. The
patient impacts represent clinical scenarios and response
actions on which the robotic surgeons should be trained on.

The Safety Hazard Injection Engine consists of custom-
ized modules for (a) retrieving hazard scenarios, (b) generat-
ing software fault injection campaign and selecting fault
injection strategy, (c) conducting fault injection experiments,
and (d) logging and collecting data in an automated fashion
[12]. The Injection Controller is responsible for starting, stop-
ping, and automating the fault injection campaign. In a nor-
mal campaign execution, a Safety Hazard Scenario Library
constructed based on the analysis of adverse events is
accessed to retrieve the list of desired hazard scenarios. Then
causal factors leading to each desired hazard scenario are
simulated by selecting the fault injection parameters. Each
hazard scenario includes a possible unsafe control action
and a list of potential causal factors. An example unsafe con-
trol action would be a motor command is provided by the
control software when there is a mismatch between the soft-
ware state and hardware state of the robot. Faulty communi-
cation between software and hardware (e.g., through USB) is
an example causal factor that might lead to such unsafe con-
trol action (see the third example in Table 1). Based on the
causal factors involved in each hazard scenario, the analysis
of Raven source code and software/hardware architecture,
the Fault Injection Strategies module retrieves information
on software functions which can most likely mimic the causal
factors leading to the safety hazard as well as the key variables
in those functions and their normal operating ranges. This
information is translated to the parameters to be used by
the fault injectors for simulating potential causal factors.
The fault injection parameters include the location in the
software function, the trigger or condition under which
the fault should be injected, and the target variables to
be modified by the injection (see column 4 of Table 1).
Finally, the appropriate software-implemented Fault Injec-
tors and the robot software are executed to conduct a fault
injection experiment during a training scenario. At the
end of each injection run, the injection parameters and
data are collected for further analysis. For a more detailed
description of Safety Hazard Injection Engine, refer to our
previous work [12].

3. Results and Discussion

We present the experimental evaluations of the proposed
hardware-in-the-loop simulator in this section. There are
mainly two parts: (1) simulating safety hazards and their
detection and (2) motion planning in a training environment
with FRS model.

3.1. Fault-Free and Contact-Free Run for Model Verification.
In this work, the robot dynamics is modeled for all 7 DOF, in

ODE environment, compared to only 3 DOF were modeled
in [45]. Our dynamic model is from joint torque to joint
states, ignoring the motor dynamics and cable tensions.
One reason for doing this is that the cable coupling intro-
duces uncertainties in the model and nonuniformity of
cable tension behaviors. In our experiment setting, we
tighten the cables as tight as possible before the testing.
Another reason is that the system is running at a 1000Hz fre-
quency, which gives very little margin for heavy computation
and introducing even a small time delay that will cause sys-
tem instability. Although the dynamics calculation is done
on the Surgeon Console machine rather than the Raven com-
puter, we still do not want to violate the timing constraints in
each control loop.

The joint torque vector τ is the controller output based
on desired joint position obtained through inverse kinemat-
ics and current joint position. PD controllers are used for
joints 1, 2, 4, 5, 6, and 7, and PID is used for joint 3, which
is the tool insertion translational joint. A set of manually
tuned PID gains make the system closely track the desired
joint positions while keeping the joint torque/force τ within
certain bounds. This means that the model is behaving like
the robot rather than a system which has low damping and
is fast enough to track reference signal. Figure 4 shows the
trajectories for arbitrary motions provided by the operator
(black), the internal physics engine (dynamic model) calcula-
tions (red), and the real robot trajectory (blue) for the first
five joints on the left robot arm (the right arm is identical
to the left arm in terms of modeling and control). Through
forward kinematics chain, one can obtain the end-effector
position error. Figure 4 shows the different portions of the
trajectories (separated with dashed lines) corresponding to
different teleoperation scaling factors, respectively, ranging
from 0.05 to 0.2 with the spacing interval of 0.05. With
larger motion scaling factors, the error also increases, because
the modeling error for joints 4 and 5 are more sensitive to
the scaling factor. These results verify the accuracy of the
modeling in ODE environment, compared to the real
robot trajectory.

3.2. Fault Injection to Robot Software. Many of the haz-
ard scenarios shown in Table 1 may cause unexpected
instrument movements and sudden jumps. In this section,
we use the safety hazard injection engine to trigger the
faulty commands at network layer and software hardware
communication layer as in [8]. More specifically, to simu-
late the resulting safety hazard scenarios, we corrupt the
motor commands sent to the robot hardware and the
Omni commands sent to the Raven computer, as indicated
by numbers in Figure 2.

In the experimental setup, we disabled the collision
checking in ODE, that is, we did not consider the case where
hard collision happens and will affect the robot dynamics too
much. We inject periodic faults to (i) the first (shoulder) joint
of the robot (which has stronger cable in the Raven-II) and
(ii) the motion command data in network layer transmitting
from the local machine to Raven computer, while the simula-
tor receives the original “clean” Omni input. In the second
case (in Figure 2), it is obvious that receiving the corrupted

8 Journal of Healthcare Engineering

desired state data, the robot will follow the incorrect trajec-
tory and end up deviating from the trajectory expected by
the operator. From the fault-free run result as shown in
Figure 4, we set the threshold of triggering the haptic force
feedback when the end-effector positions between the model
and the robot deviate more than 3mm. In this section, we
mainly focus on simulating and analyzing the resulting
adverse events in the first case (i.e., injection of periodic faults
to the motor commands).

3.2.1. Simulation of Sudden Jump. In robotic surgery, many
reported adverse events can be classified as unexpected joint
motion in a small time interval, that is, sudden jump (the
third scenario in Table 1). Although the causality can be
many to one, we are able to reproduce this kind of adverse
events and expose the surgeon during training phase by using
our hardware-in-the-loop simulator incorporated with the
safety hazard injection engine. We use haptic force feedback
to provide information to the operator immediately, so that
they can respond to the adverse events as quickly as possible,
by emergency actions such as release the foot pedal to disen-
gage the robot and triggering motor breaks (to avoid patient
injuries). To simulate robot jump, during the teleoperation
running mode, we inject constant motor command (can be

zero or nonzero but within the valid range of motor’s DAC
command) to the shoulder joint at a specified time period.
The underlying reason for the jump is the accumulation of
position errors because the controller has to generate large
torque commands to track the desired position once the
robot goes back to the nominal run.

Figure 5 shows the result of our hardware-in-the-loop
simulator running with the fault injector. In this scenario,
every 8 second after pedal down (teleoperation mode), the
safety hazard injection engine corrupts the motor command
sent to the shoulder joint and keeps the fault active for 300
cycles (300ms). One can observe that the sudden jump
behavior happened in joint 1 profile in Figure 5. The sudden
jumps can happen many times (in this experiment, 4 times),
while the operator may not notice them since the duration is
quite short (a few milliseconds). Such abrupt jumps if only
happen a few times during the procedure, they will leave no
impression to the operator and he may even think that it is
his own mistake. However, the sudden movements/jumps
may happen due to hardware problems (see Table 1). The
robot has the safety mechanisms to monitor the robot status
and detect such faults, but in our fault injection experiments,
we demonstrated the robot can jump frequently without trig-
gering the robot’s safety mechanisms [8, 12] (e.g., the robot

Joint 1 pro�le

Joint 4 pro�le

Joint 2 pro�le

Joint 5 pro�le

Joint 3 pro�le

Position error pro�le

−105 −65

−70

−75

−80

−85

−90

−95
0 1 2 3 4 5 6 7 8

dx
dy

dz
Magnitude

0.425

0.42

0.415

0.41

0.405

0.4

0.395
0

4

3
2

1

0
−1

−50

−10
−20
−30
−40

0 1 2 3 4 5 6 7 8

60
50

30
20
10

0

−60

−70

−80

−90

−100

−110
−120

0 1 2 3 4 5 6 7 8

−2

−3
0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

−110

−115

−120

−125

−130

−135
0 1 2

Teleoperation time (ms)

Po
sit

io
n

(d
eg

re
e)

Po
sit

io
n

(d
eg

re
e)

Po
sit

io
n

(d
eg

re
e)

En
d-

e�
ec

to
r p

os
iti

on
 er

ro
rs

 (m
m

)

Po
sit

io
n

(d
eg

re
e)

Po
sit

io
n

(m
m

)

3 4 5 6 7 8

×104

Teleoperation time (ms) ×104
Teleoperation time (ms) ×104

Teleoperation time (ms) ×104

Teleoperation time (ms) ×104
Teleoperation time (ms) ×104

40

Model
Robot
Desired

Model
Robot
Desired

Model
Robot
Desired

Model
Robot
Desired

Model
Robot
Desired

Figure 4: Comparison of the model and robot running data (up to 5 joints) and end-effector position error of (2.43± 1.72).

9Journal of Healthcare Engineering

stopped at the last jump due to the computed motor control
is beyond the limit).

Figure 6 shows the magnitude of the haptic force feed-
back provided to the Omni device using (5). The results show
that we captured the adverse events exactly at the times the
fault injection was performed and provided the feedback to
the user in time. The haptic force is being saturated in a range
that it will not interfere the normal teleoperation due to the
passivity and high damping of the human operator. When
a surgeon faces such a scenario in real surgery, possible

mitigation strategies include slow down the motions or
release the pedal to disengage the master and slave and call
the technical help in the hospital (see the last column of
Table 1).

3.3. Test Results on Path Planner. In this section, we evaluate
the performance of the proposed Raven-II simulator with the
integration of physics engine and the path planner. We per-
formed all tests locally, that is, the simulator software and
the Omni client software are running on the same Windows

0.03(U
ni

t)

0.02

0.01

0
0 1

0.04

0.05

0.5 1.5 2

Teleoperation time (ms)

Haptic feedback force

2.5 3 3.5 4
×104

0.06

Figure 6: Haptic force feedback on the Omni device during fault injection.

−121
Joint 1 pro�le Joint 2 pro�le Joint 3 pro�le

Joint 4 pro�le Joint 5 pro�le Position error pro�le

−122
−123
−124
−125
−126

Po
sit

io
n

(d
eg

re
e)

Po
sit

io
n

(d
eg

re
e)

Po
sit

io
n

(d
eg

re
e)

Po
sit

io
n

(d
eg

re
e)

Po
sit

io
n

(m
m

)
En

d‒
e�

ec
to

r p
os

iti
on

 er
ro

rs
 (m

m
)

−127
−128
−129
−130
−131

30
25
20
15
10

5
0

−5

0 0.5 1 1.5 2

Teleoperation time (ms)

2.5 3 3.5 4 0 0.5 1 1.5 2

Teleoperation time (ms) Teleoperation time (ms)

Teleoperation time (ms) Teleoperation time (ms) Teleoperation time (ms)

2.5 3 3.5 4

2.75 2.8 2.85

−78
−80
−82
−84
−86
−88
−90
−92
−94
−96
−98

−70
−75
−80
−85
−90
−95

−100
−105
−110

×104 ×104

0

8
6
4
2
0

−2
−4
−6
−8

0.42

0.415

0.41

0.405

0.4

0.395
0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

×104

×104 ×104 ×104

Joint 1 pro�le

2.75 2.8 2.85

dx
dy

dz
Magnitude

Model
Robot
Desired

Model
Robot
Desired

Model
Robot
Desired

Model
Robot
Desired

Model
Robot
Desired

Figure 5: Robot and model trajectories during fault injection are enabled (with teleoperation scaling factor of 0.1).

10 Journal of Healthcare Engineering

7 machine, with Intel Core i7 CPU @ 3.50GHz, to avoid the
time delay caused by long distance communication over the
network. And for all tests, the step size used in ODE is
0.001 second.

Initially, the robot arm is placed deeply inside the FRS
training module. The test scenario is to achieve the motion
sequences of retrieving the robot arm first from the surgical
field and then moving forward to reach the cube ring. The
opening area of the dome does not coincide with the pivot
point (indicated by the yellow sphere in Figure 3) of the robot
arm; thus, it is very easy to collide with the dome or loops.
The user was asked to activate the planning mode, which
means he can directly manipulate the arm to reach the target
by any means with collision checking disabled. Once he
arrived at the target configuration, the planner will record
this configuration and start to run the planning algorithm.
We evaluate the performance with respect to different objec-
tive functions, the number of collision-free samples, and the
algorithm execution time.

Choosing 500 collision-free samples for the path planner,
Figure 7 shows the end-effector (mass center of the two jaws)
trajectories of user’s movement when specifying the target
configuration (red), minimizing 6-dimentional path length
(green), and minimizing end-effector linear velocity varia-
tions (blue), respectively. They are the path tracking
results rather than the waypoints for the planning results.
We record the waypoints on every other loop time of
ODE simulation loop so that they will be shown more
clearly in the figure. The density of waypoints indicates
the velocity. The sparser means the velocity is larger while
more dense waypoints means the velocity is relatively
slow. In our test scenario, it is difficult for the novice user

to figure out a collision-free path to reach the cube ring’s
location while manipulating the robot arm. So in our interac-
tive path planning setting, collision is allowed just simply for
the user to quickly reach the target configuration. By choos-
ing η1 = 1 and η2 = 0, we got a path with smaller length
(planner returns 36 waypoints), while by choosing
η1 = 0 and η2 = 1, we got a path with smaller velocity varia-
tions (planner returns 54 waypoints).

Next, we compare the planning performance of using a
different number of collision-free samples and verify that
the algorithm can converge to the optimum with respect to
the cost function. In this test scenario, we choose
η1 = 0 1 and η2 = 0 5 As shown in Figure 8, we observe that
as the number of samples increases, the cost becomes smaller
and the algorithm running time becomes longer due to
heavier computation in the “for” loop of the algorithm.

Table 2 shows the algorithm performance with
η1 = 0 1 and η2 = 0 5 and autonomous tracking perfor-
mance. Each test scenario runs the planning algorithm and
autonomous tracking 20 times to get the average result. In

Table 2: Performance evaluation result.

Sample
number

Planning
time (s)

Path tracking
time (s)

Returned
reference
waypoints
number

Cost
Success
rate (%)

200 3.676 4.705 13.5 21.9 90

500 15.935 4.277 14.3 11.1 85

1000 47.708 3.909 11.1 6.5 85

2000 216.373 3.688 11.1 5.7 75

−1
−1

−0.5−0.5

−0.5

0.5

Trajetory provided by the user

Minimize length

Minimize velocity variations

0.5

0.5

1.5

0
0

Y (100 m
m

)

Z
(1

00
 m

m
)

X (100 mm)

0

1

1

1

−1.5

Figure 7: Three end-effector trajectories representing user’s
movement and two different optimization criteria.

−1

−1
−0.5

−0.5

0.5

n = 200, j = 18.793, t = 3.282

n = 200, j = 9.748, t = 18.812

n = 1000, j = 6.128, t = 55.061

0.5

0.5

1.5

0

0Y (100 mm)

Z
(1

00
 m

m
)

X
 (1

00
 m

m)0

1

1

1

2

−1.5

−0

Figure 8: Three end-effector trajectories representing returned by
FMT∗ using different number of samples.

11Journal of Healthcare Engineering

Table 2, “returned reference waypoints” means the number
of waypoints returned by FMT∗, and going from one position
to another is dynamically feasible in the planning phase.
However, as the number of samples increases, the path gets
shorter, and thus in path tracking, it would be closer to the
obstacle (wall of the dome) and result in lower success rate
(more chances to collide). One way to resolve this issue is
to include an additional term in cost function as maximizing
the obstacle clearance distance. In this training setup, the
planning time and the execution time are acceptable if using
appropriate number of samples to start the algorithm.

4. Conclusions

We have demonstrated a general framework for robot-
assisted surgical simulators for a more robust and resilient
robotic surgery. With the goal of providing high-fidelity
surgical training in simulation, we created a hardware-in-
the-loop simulator platform. We integrate the simulator
with a physics engine and a state-of-the-art path planning
algorithm to help surgeon acquire an optimal sense of
manipulating the robot instrumental arm and achieve
autonomous motion of the surgical robot. We integrated
a safety hazard injection engine integrated with the simulator
software to reproduce safety hazards happened in real sur-
gery. A haptic force feedback mechanism was designed to
provide surgeon an extra modality of information about the
robot status when unexpected motion happens. Delivering
the safety alarm to the surgeon by haptics is an efficient
way of capturing such occurrences but will need additional
human factor studies.

The future work includes providing haptic feedback to
guide the operator moving along the preplanned optimal
path to perform training tasks, for example, use of gripper
to grasp a ring. Since the current teleoperation mechanism
uses incremental motion of the master and maps to the
end-effector of the slave robot to resolve the two different
workspaces of master and slave (thus using the pedal to dis-
engage/engage and reconfigure the master), we can provide
visual or audio cues to the operator once it approaches the
workspace boundary of the haptic device. With haptic force
guidance, we believe we can further reduce the need for
supervisory by the expert surgeon during training.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the National Science
Foundation under Award nos. CNS 13-14891 and CNS 15-
45069 and a grant through the JUMP-ARCHES (Applied
Research for Community Health through Engineering and
Simulation) program for addressing safety and reliability of
surgical robots. This project was carried out at the Health
Care Engineering Systems Center at Illinois.

References

[1] G. Spinoglio, Robotic Surgery: Current Applications and New
Trends, Springer, 2015.

[2] M. Passiment, H. Sacks, and G. Huang,Medical Simulation in
Medical Education: Results of an AAMC Survey, 2011.

[3] Y. Okuda, E. O. Bryson, and e. al., “The utility of simulation in
medical education: what is the evidence?”Mount Sinai Journal
of Medicine, vol. 76, no. 4, pp. 330–343, 2009.

[4] http://surgicalscience.com/systems/lapsim/haptic-system/.
[5] http://www.mimicsimulation.com/products/dv-trainer/.
[6] http://www.simulatedsurgicals.com/ross.html.
[7] H. Alemzadeh, J. Raman, N. Leveson, Z. Kalbarcyzk, and

R. K. Iyer, “Adverse events in robotic surgery: a retro-
spective study of 14 years of FDA data,” PLoS One, vol. 11,
no. 4, pp. 1–20, 2014.

[8] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. T. Kalbarczyk,
and R. K. Iyer, “Targeted attacks on teleoperated surgical
robots: dynamic model-based detection and mitigation,” in
The 46 IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 395–406, 2016.

[9] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J.
Chizeck, “To Make a Robot Secure: An Experimental Analysis
of Cyber Security Threats against Teleoperated Surgical
Robots,” 2015, http://arxiv.org/abs/1504:04339.

[10] F. F. Bilotta, S. M. Werner, S. D. Bergese, and G. Rosa,
“Impact and implementation of simulation-based training
for safety,” Scientific World Journal, vol. 2013, Article ID
652956, 6 pages, 2013.

[11] H. Alemzadeh, D. Chen, Z. Kalbarczyk et al., “A software
framework for simulation of safety hazards in robotic surgical
systems,” in Special Issue on Medical Cyber Physical Systems
Workshop, vol. 12, p. 4, 2015.

[12] H. Alemzadeh, D. Chen, A. Lewis et al., “Systems-theoretic
safety assessment of telerobotic surgical systems,” in the 34th
International Conference on Computer Safety, Reliability, and
Security (SAFECOMP), pp. 213–227, 2015.

[13] http://applieddexterity.com/.
[14] D. Glassman, L. White, A. Lewis et al., “Raven surgical robot

training in preparation for da Vinci,” Medicine Meets Virtual
Reality, vol. 21, pp. 135–141, 2014.

[15] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection
techniques and tools,” Computer, vol. 30, no. 4, pp. 75–
82, 1997.

[16] Y. Mo, T. H.-J. Kim, K. Brancik et al., “Cyber–physical security
of a smart grid infrastructure,” in Proceedings of the IEEE,
vol. 100, no. 1, pp. 195–209, 2012.

[17] M. LeMay and C. A. Gunter, “Cumulative attestation kernels
for embedded systems,” in Proceedings of the 14th European
Conference on Research in Computer Security, pp. 655–670,
2009.

[18] H. Lin, A. Slagell, Z. Kalbarczyk, P. Sauer, and R. Iyer,
“Runtime semantic security analysis to detect and mitigate
control-related attacks in power grids,” in IEEE Transac-
tions on Smart Grid, 2016.

[19] K. Koscher, A. Czeskis, F. Roesner et al., “Experimental
security analysis of a modern automobile,” in IEEE Sympo-
sium on Security and Privacy (SP), pp. 447–462, 2010.

[20] T. P. Vuong, G. Loukas, and D. Gan, “Performance evaluation
of cyber-physical intrusion detection on a robotic vehicle,” in
IEEE International Conference on Computer and Information

12 Journal of Healthcare Engineering

http://surgicalscience.com/systems/lapsim/haptic-system/
http://www.mimicsimulation.com/products/dv-trainer/
http://www.simulatedsurgicals.com/ross.html
http://arxiv.org/abs/1504:04339
http://applieddexterity.com/

Technology; Ubiquitous Computing and Communications;
Dependable, 2015.

[21] T. P. Vuong, G. Loukas, D. Gan, and A. Bezemskij,
“Decision tree-based detection of denial of service and
command injection attacks on robotic vehicles,” in IEEE
International Workshop on Information Forensics and
Security (WIFS), 2015.

[22] Y. Dong, N. Gupta, and N. Chopra, “On content modification
attacks in bilateral teleoperation systems,” in American Con-
trol Conference (ACC), 2016.

[23] Z. Ju, C. Yang, Z. Li, L. Cheng, and H. Ma, “Teleoperation of
humanoid baxter robot using haptic feedback,” in Interna-
tional Conference on Multisensor Fusion and Information
Integration for Intelligent Systems (MFI), 2014.

[24] H. H. King, B. Hannaford, K. W. Kwok et al., “Plugfest 2009:
global interoperability in telerobotics and telemedicine,” in
IEEE International Conference on Robotics and Automation
(ICRA), 2014.

[25] O. Weede, H. Mönnich, B. Müller, and H. Wörn, “An intelli-
gent and autonomous endoscopic guidance system for mini-
mally invasive surgery,” in IEEE International Conference on
Robotics and Automation, 2011.

[26] A. A. Navarro, A. Hernansanz, E. A. Villarraga, X. Giralt, and
J. Aranda, “Automatic positioning of surgical instruments in
minimally invasive robotic surgery through vision-based
motion analysis,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007.

[27] A. Krupa, J. Gangloff, M. de Mathelin et al., “Autonomous
retrieval and positioning of surgical instruments in robot-
ized laparoscopic surgery using visual servoing and laser
pointers,” in IEEE Intemational Conference on Robotics
&Automation, 2002.

[28] D.-L. Chow, R. C. Jackson, M. C. Cavusoglu, andW. Newman,
“A novel vision guided knot-tying method for autonomous
robotic surgery,” in IEEE International Conference on Auto-
mation Science and Engineering (CASE), 2014.

[29] B. Kehoe, G. Kahn, J. Mahler et al., “Autonomous multilateral
debridement with the Raven surgical robot,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2014.

[30] D. Hu, Y. G. B. Hannaford, and E. J. Seibel, “Path planning
for semi-automated simulated robotic neurosurgery,” in
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015.

[31] J. Xu, V. Duindam, R. Alterovitz, and K. Goldberg, “Motion
planning for steerable needles in 3D environments with
obstacles using rapidly-exploring random trees and back-
chaining,” in International Conference on Automation Sci-
ence and Engineering (CASE), 2008.

[32] S. Patil, J. Burgner, R. J. W. III, and R. Alterovitz, “Needle
steering in 3-D via rapid replanning,” IEEE Transactions on
Robotics, vol. 30, no. 4, pp. 853–864, 2014.

[33] N. Chentanez, R. Alterovitz, D. Ritchie et al., “Interactive
simulation of surgical needle insertion and steering,” ACM
Transactions on Graphics (Proceedings SIGGRAPH), vol. 28,
no. 3, pp. 88:1–88:10, 2009.

[34] X. Li, H. Alemzadeh, D. Chen, Z. Kalbarczyk, R. K. Iyer,
and T. Kesavadas, “A hardware-in-the-loop simulator for
safety training in robotic surgery,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2016),
2016.

[35] http://www.ode.org/.

[36] J. M. Hsu and S. C. Peters, “Extending open dynamics engine
for the DARPA virtual robotics challenge,” in Simulation,
Modeling, and Programming for Autonomous Robots, 2014.

[37] S. Peters and J. Hsu, “Comparison of Rigid Body Dynamic
Simulators for Robotic Simulation in Gazebo,” 2014.

[38] http://frsurgery.org/training-model/.

[39] S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” The International Journal of
Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[40] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast
marching tree: a fast marching sampling-based method for
optimal motion planning in many dimensions,” The Interna-
tional Journal of Robotics Research, vol. 34, no. 7, pp. 883–
921, 2015.

[41] Kinematic Analysis of the Raven-II Research Surgical Robot
Platform (REV: 9-Mar-2015).

[42] L. N. Verner and A. M. Okamura, “Force & torque feedback vs
force only feedback,” in EuroHaptics Conference, 2009.

[43] J. C. Gwilliam, M. Mahvash, B. Vagvolgyi, A. Vacharat, D. D.
Yuh, and A. M. Okamura, “Effects of haptic and graphical
force feedback on teleoperated palpation,” in IEEE Interna-
tional Conference on Robotics and Automation, 2009.

[44] OpenHaptics Toolkit Programmers Guide.

[45] M. Haghighipanah, Y. Li, M. Miyasaka, and B. Hannaford,
“Improving position precision of a servo-controlled elastic
cable driven surgical robot using unscented Kalman filter,” in
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.

13Journal of Healthcare Engineering

http://www.ode.org/
http://frsurgery.org/training-model/

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

