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Abstract— Despite significant developments in the design of
surgical robots and automated techniques for objective evalua-
tion of surgical sKills, there are still challenges in ensuring safety
in robot-assisted minimally-invasive surgery (RMIS). This pa-
per presents a runtime monitoring system for the detection of
executional errors during surgical tasks through the analysis of
kinematic data. The proposed system incorporates dual Siamese
neural networks and knowledge of surgical context, including
surgical tasks and gestures, their distributional similarities,
and common error modes, to learn the differences between
normal and erroneous surgical trajectories from small training
datasets. We evaluate the performance of the error detection
using Siamese networks compared to single CNN and LSTM
networks trained with different levels of contextual knowledge
and training data, using the dry-lab demonstrations of the
Suturing and Needle Passing tasks from the JIGSAWS dataset.
Our results show that gesture specific task nonspecific Siamese
networks obtain micro F1 scores of 0.94 (Siamese-CNN) and
0.95 (Siamese-LSTM), and perform better than single CNN
(0.86) and LSTM (0.87) networks. These Siamese networks also
outperform gesture nonspecific task specific Siamese-CNN and
Siamese-LSTM models for Suturing and Needle Passing.

I. INTRODUCTION

Robot-assisted minimally invasive surgery (RMIS) has
become a standard approach across different specialties,
including urology, gynecology, and general surgery. Surgi-
cal robots translate the surgeon’s hand, wrist, and finger
movements into precise motions of robotic manipulators and
miniaturized surgical instruments. Potential benefits include
enhanced visualization, increased dexterity, smaller incisions,
and shorter recovery time. However, the safety of RMIS
can be compromised due to unintentional human errors
[1]-[4] or the potential vulnerabilities of surgical robots
to accidental faults and malicious attacks targeting sensors,
actuators [5], communication between the surgeon’s console
and the robot [6], [7], or the robot control software [8], [9].

Developing machine learning (ML) techniques for auto-
mated and objective evaluation of surgical skills based on
kinematic [10], [11] and video [12] data from procedures
has been an active area of research. However, the current
ML techniques are mostly developed for offline analysis
of surgeon’s performance. The next generation of surgical
robots and simulators can be enhanced with capabilities for
runtime analysis of surgical tasks and providing data-driven
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feedback to surgeons during training or actual surgery to
improve safety, efficiency, and quality of care [13], [14].

Previous works have proposed the idea of runtime surgical
monitoring for detection and prevention of safety-critical
events [8], [14], [15], surgeon authentication [16], and virtual
coaching [13]. In [8], the authors developed a dynamic
model-based anomaly detection technique for mitigation of
unsafe events caused by malicious attacks on a surgical
robot controller. However, errors can also happen in the
operational context as a result of surgeons’ sub-optimal
performance [15]. In [1], a new rubric was proposed for
evaluating executional and procedural errors based on video
and kinematic data from dry-lab simulation experiments.
This work showed that the type and frequency of errors are
dependent on surgical context, characterized by the specific
tasks (e.g., Suturing) and gestures (e.g., Pulling suture)
performed by the surgeon.

Recently, deep learning (DL) techniques (e.g., CNN and
LSTM networks), have been applied to the prediction of
potential unsafe events caused by unintentional human errors
in simulated surgical training tasks [14], [15] and retinal mi-
crosurgery [17]. These works showed preliminary evidence
for the importance of incorporating the knowledge of surgical
gestures in model training [14], [15] to improve detection
performance. However, the performance of DL models is
often negatively affected by the small size of training data
and the lack of labeled datasets on errors [14].

In this paper we aim to address the challenges in runtime
detection of executional errors in robot-assisted surgery by
developing models that can achieve reliable performance
given small training data. Our goal is to investigate whether
learning the differences among erroneous and normal trajec-
tories, and incorporating different levels of surgical context
information can improve the error detection accuracy. The
main contributions of the paper are as follows:

o Developing a runtime monitoring system based on dual
Siamese neural network architectures that learns the
differences between normal and erroneous kinematic
trajectories and enables reliable error detection perfor-
mance using small training dataset sizes.

o Demonstrating that incorporating the knowledge of
surgical context, including information on the current
surgical task and gesture, which captures distributional
similarities across gesture and task trajectories and spe-
cific types and frequencies of errors in model training,
can improve the error detection performance.

o Evaluating the proposed system for runtime detection
of executional errors using the publicly-available JIG-
SAWS dataset collected from dry-lab robot-assisted sur-
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gical tasks (Suturing and Needle Passing) performed on
a da Vinci robot from Intuitive Surgical Inc. [18]. Our
experiments show that dual input Siamese neural net-
works can achieve on average a better performance than
single CNN and LSTM models after augmenting the
data with more trajectories (e.g., for gesture nonspecific
and task specific models, F1 score for Siamese-CNN
vs. CNN: 0.79 vs. 0.72 and Siamese-LSTM vs. LSTM:
0.87 vs. 0.60). We also found that incorporating the
knowledge of surgical gestures and specifically training
the models with gesture specific trajectory examples
helps with improving F1 scores more than training with
more gesture nonspecific trajectory examples.

II. PROBLEM STATEMENT

We model surgical procedures as a hierarchy composed of
a sequence of tasks (e.g., Suturing, Needle Passing) coming
from a library of surgical tasks 7', each represented by a
grammar graph with steps defined as gestures which are
the atomic surgical activities in a procedure [1], [14]. We
denote the library of all surgical gestures with GG such as in
Table [l The change in the surgical context happens in the
temporal domain as a result of the change in the position and
orientation of the surgical instruments’ end-effectors, leading
to the corresponding change in the gestures and tasks.

Our previous analysis of data from dry-lab robotic surgery
experiments showed that executional and procedural errors
can negatively affect surgical performance [1]. Executional
errors are defined as the failure of a specific step in a
task. Procedural errors are defined as the omission or re-
arrangement of correctly undertaken steps within a task
[4]. Our goal is to detect executional errors at runtime by
analyzing the kinematic data collected from the robot.

The input kinematic data to our error detection system
is a multi-dimensional time series matrix x; € RNenXNs,
with V., representing the number of features extracted from
the robot’s kinematic data and N, representing the size of
the sliding window. We model the data pre-processing step
as a function f(-) on each input window yj. We assume
each xj can be mapped to a gesture class G; € G using
a gesture segmentation and classification method like those
proposed in the literature [19]-[27]. We adopt the gesture-
specific error rubric presented in [1] to define a set of unique
executional error modes E corresponding to each gesture
class as shown in Table [I The output of the error detector is
an error probability y; assigned to the input window Yy, as
shown in Figure [I] where G, and T}, represent the gesture
and task classes that the input is mapped to and Error
represents the event that one of the error modes in E is
observed in this window.

Our goal is to investigate the following research questions
by designing and evaluating different neural network archi-
tectures for runtime error detection using different levels of
contextual information and amounts of training data:

RQ1: Can learning the patterns of differences between
erroneous and normal trajectories using a dual input net-
work rather than just learning error patterns improve error

TABLE I: Gesture Definitions (adopted from [28]), Common
Gesture-specific Executional Error Modes (adopted from [1])

Gesture | Description Common
Gesture-Specific
Errors
Gl Reaching for needle with right | Multiple attempts
hand
G2 Positioning needle Multiple attempts,
Out of view
G3 Pushing needle through the | Multiple attempts
tissue
G4 Transferring needle from left | Multiple attempts,
to right Needle orientation
Go6 Pulling suture with left hand Multiple attempts,
Out of view
G8 Orienting needle & Uses tis- | Multiple attempts,
sue/ instrument for stability Needle orientation
G9 Using right hand to help | Multiple attempts
tighten suture

detection performance?

RQ2: How does incorporating the knowledge of the tasks
and gestures being performed by the surgeon/robot affect the
performance of erroneous gesture detection?

We specifically consider the following setups for training
different models with different levels of contextual knowl-
edge on the tasks and gestures:

o Gesture specific and task specific models

o Gesture specific and task nonspecific models

o Gesture nonspecific and task specific models

o Gesture nonspecific and task nonspecific model

We hypothesize that the models trained with the data specific
to a task or gesture can achieve better performance than the
models with no contextual knowledge.

III. METHODS

We develop different single and dual neural network archi-
tectures for runtime detection of executional errors, including
a CNN network and an LSTM network (inspired by state-of-
the-art gesture recognition and error detection models [14],
[23]) and their corresponding Siamese networks, respectively
built with CNN encoders and LSTM layers (see Figure
E]). This section describes the structure of these networks,
the data pre-processing done for training and testing the
networks, and how the output from the models were utilized
to detect erroneous gestures.

A. Data Pre-processing

The input to the error detection networks is a 26-
dimensional time-series matrix. To reduce the computa-
tional cost and enable faster training convergence, we time-
normalized and downsampled the input time-series with a
factor of 2. A sliding window of 30 samples (derived from
the median length of the shortest gesture in the dataset) with
a stride of 20 samples was used to obtain the input data.

B. CNN Network

The CNN network shown in Figure [T)is designed with two
sets of blocks composed of a 1d convolution layer, a max-
pooling layer, a dropout layer, and a batch normalization
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Fig. 1: Different Neural Network Structures with Different Training Setups and Contextual Information

layer. The output from the last batch normalization layer is
flattened and fed into four fully connected layers, including
three layers with ReLU activation functions [29] and one
last layer with a Sigmoid activation function that outputs
the probability of the gesture being erroneous. To train the
network, [f(xx),Yx] is fed into the network, where f(xx)
is the data after pre-processing, and Y}, is the ground truth
indicating whether the gesture is erroneous (Y = 1) or
normal (Y, = 0). The binary cross entropy loss function
[30] is used to train this network.

C. LSTM Network

The LSTM network contains 3 LSTM layers. The hidden
states from the last LSTM layer are flattened and fed into
four fully connected layers with dropout layers and with
ReLU activation functions for the first three layers. The last
fully connected layer is connected to a Sigmoid activation
function that outputs the probability of a gesture being
normal or erroneous. The training process is similar to the
CNN network.

D. Dual Siamese Neural Networks

Siamese neural networks are a class of neural network
architectures with two or more identical structures that focus
on learning a similarity function for indicating whether the
inputs are from the same or different classes. Because of
their ability to achieve better prediction accuracy than single
networks for small data sizes, they have been applied to
applications such as signature verification, face recogni-
tion [31], and EEG-based brain-computer interface signal
classification [32].

As shown in Figure [T} we designed two different Siamese
networks, each containing two identical neural networks,
with the same structure as the single input CNN encoder
or the LSTM layers used for the CNN and LSTM networks
described above. For binary classification, each Siamese net-
work takes in two gesture windows and processes them using
its two identical structures in parallel. Then, the absolute
value of the difference between outputs from the two struc-
tures is calculated. We then use three fully connected layers
with ReLLU activation, and the fourth layer is connected to a
Sigmoid activation function that outputs the probability that
one of the two windows belongs to a different class.

To train the Siamese neural network, the tuple
[f(xx), f(x;),Ye;] is fed into the network, where
f(xx), f(x;) are pairs of the gesture windows after
pre-processing and Y}; denotes the label. Yy, is assigned a
value of O when xy,x; are both normal gesture windows
and a value of 1 when one of the windows is erroneous and
the other is normal. The binary cross entropy loss function
is used to train the network.

During the evaluation phase, each input window is paired
with all the existing normal windows in the training dataset.
The network outputs a value of O when the input window is
indicated to be in the same class as a normal window and a
value of 1, meaning that the unknown gesture window is not
normal, and thus, erroneous. We then use majority voting to
fuse the results from all the pairs to generate a final normal
or erroneous predicted label for each input window.

IV. EXPERIMENTAL EVALUATION

All experiments were conducted on a 64-bit PC with an
Intel Core 19 CPU @ 3.70GHz and 32GB RAM running
Linux Ubuntu 20.04 and an NVIDIA RTX2080 Ti 11GB
GPU. The neural network models were implemented using
PyTorch [33] version 1.8.0.

A. Datasets

The JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS) [28] is a publicly available dataset, collected
using the da Vinci surgical robot [18] from eight surgeons
with different levels of skills and expertise during three dry-
lab surgical tasks (Suturing, Knot Tying, and Needle Passing)
on a bench-top model. The JIGSAWS dataset includes syn-
chronized kinematic and video data recorded at 30Hz along
with manual annotations indicating the gestures for each
trajectory and scores quantifying the surgeons’ performance.

We used the kinematic data from the robot’s patient-side
manipulators (PSM) for the Suturing and Needle Passing
tasks and the gesture labels from the JIGSAWS dataset. The
kinematic variables included tool tip position, orientation,
linear velocity, rotational velocity, and gripper angle for the
PSMs of both the left and right hands. Tool tip orientation
was described using Euler angles calculated from the left and
right hand rotational matrices to reduce the dimensionality
of the inputs. We used the executional errors labels for



Training | Task Network G1 G2 G3 G4 G6 micro F1 micro F1 | Training
CNN 0.66 0.48 0.73 0.72 0.90 0.78 0.72
Suturing Siamese -CNN | 0.58 0.29 0.70 0.75 0.91 0.58 0.79
. LSTM 0.52 0.48 0.73 0.84 0.94 0.52 0.60 &
& Siamese -LSTM | 0.66 033 0.74 0.75 0.90 0.66 0.57 g
g g Data Total Trials 29 166 64 119 163 641 641 5.
&3 Erroncous Trials | 8 (28%) | 22 (13%) | 82 (51%) | 71 (60%) | 121 (74%) | 304 (47%) 304 @7%) | S &
£5% CNN 0.57 0.61 0.36 0.30 043 043 0.56 5%
242 | Needle Passi Siamese -CNN | 051 0.55 0.43 0.20 0.46 043 0.74 £2Z
SES eedlie Fassing —TST™ 0.52 0.52 0.75 0.42 051 075 0.56 2%
Stamese -LSTM | 0.60 0.64 0.43 0.24 0.54 0.47 0.81 CES
Data Total Trials 30 17 111 33 12 453 453
Erroneous Trials | 11 (37%) | 55 @7%) | 17 (15%) | 23 (28%) | 46 41%) | 152 (34%) 152 (34%)
22 CNN 0.74 073 0.82 0.86 0.86 0.86
53 Both Tasks Stamese -CNN | 0.89 0.87 0.92 0.87 0.94 0.94
&g ‘ LSTM 0.72 0.62 0.83 0.73 0.87 0.87 [067 [ Baseline
P Siamese -LSTM | 0.89 0.87 0.93 0.90 0.95 0.95 [ 068 | G*T*
oy Total Trials 59 283 275 202 275 1094
g&c | Daa Erroneous Trials | 19 (32%) | 77 27%) | 99 (36%) | 94 (47%) | 167 (61%) | 456 (43%)

TABLE II: Performance of CNN, Siamese-CNN, LSTM, and Siamese-LSTM Models with different Training Setups. Results
for gestures G8 and G9 are not shown because of very small data available for these gestures (e.g., less than 3 erroneous trials
in Needle Passing). We obtained the baseline G*T* models with our top performing network pairs (Siamese-LSTM/LSTM).

JIGSAWS presented in [1]. Each label for a gesture trial
is either normal (0) or erroneous (1). Table [[] summarizes the
gesture definitions and their dominant error modes.

B. Experimental Setup

We experimented with the following training setups for the
network structures described in the previous section. For each
training setup, we performed cross validation with the Leave-
One-SuperTrial-Out (LOSO) setup of the JIGSAWS dataset
[28] (training on 4 super trials and leaving one super trial
out for evaluation) and calculated the mean F1 scores across
all folds. For each setup, we tuned the network parameters,
including learning rate for the Adam Optimizer [34], batch
size and epoch number with nested cross validation.

1) Gesture Specific and Task Specific training (GSTS):
In this setup separate models were trained for each gesture
from each task, resulting in 10 different models.

2) Gesture Specific and Task Nonspecific training (GST*):
This setup includes five separate models for different gesture
classes (G1, G2, G3, G4, G6) by combining gesture-specific
data from both tasks.

3) Gesture Nonspecific and Task Specific training (G*TS):
In this setup two models were trained by combining all
different gesture data for each task.

4) Gesture Nonspecific and Task Nonspecific training
(G*T*): This setup only included one model as the baseline
by training on all the gesture data from both tasks.

Although the total size of the dataset is fixed, the amount
of data (both normal and erroneous examples) used for train-
ing the models in each setup is different. For example, the
G*T* setup includes one model with the maximum training
data size while the GSTS models are trained with smallest
amount of data relevant to each specific gesture in each task.
Table [[] shows the total number of trials or gesture examples
along with the number of erroneous gesture examples used
for training in each setup. For evaluating the performance
of different network architectures and comparing different
training setups, we use the same testing setup and calculate
the mean F1 score with cross validation.

C. Gesture Specific and Task Specific (GSTS) Models

In this experiment, we evaluated the performance of the
CNN and LSTM networks versus the corresponding Siamese
networks when trained with GSTS training. The results for
different GSTS models are shown in the “Suturing” and
“Needle Passing” rows in Table |lI, Each cell in these two
rows provides the mean F1 score for each GSTS model.

Observation 1: There are no apparent advantages of
Siamese networks with GSTS training. The Siamese net-
work performance compared with that of its corresponding
CNN or LSTM network varies across different gestures.
For example, in G1 in task Suturing, CNN performs better
than Siamese-CNN, and Siamese-LSTM performs better than
LSTM. However, in G4 in task Suturing, Siamese-CNN
performs better than CNN, and LSTM performs better than
Siamese-LSTM. Hence, among GSTS models, there is no
observed advantage of using Siamese networks over CNN
and LSTM networks. This is likely due to model variance
resulting from training with very small datasets.

Observation 2: There is a positive correlation between
error percentages and F1 scores for GSTS models. Figure
[24] shows the percentage of erroneous trials in each dataset
used for training each GSTS model versus the F1 score
achieved in both the Suturing and Needle Passing tasks and
for the four different network structures. We see a positive
correlation between the F1 scores and error percentages
across all the network structures. The same observation about
the impact of error sample sizes on detection accuracy was
made in [14].

Insight 1: Having a higher percentage of error samples
helps improve the performance of GSTS models.

D. Gesture Specific and Task Nonspecific (GST*) Models

In this experiment, our goal is to understand whether train-
ing GST* models that incorporate gesture data from different
tasks can achieve better error detection performance than the
GSTS models. This is motivated by the observation that the
same gestures from different tasks share similar trajectories
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and error modes [1] and can provide more examples of errors
of the same type for training. Thus, we combined the gesture
data from the Suturing and Needle Passing tasks. We also
compared the Siamese networks’ performance with that of
the CNN and LSTM networks. The row named “Both Tasks”
in Table [lIl shows the results for the GST* models.
Observation 1: GST* models achieve comparable or
better performance than GSTS models for most cases
in the four different network structures. For the CNN
network, G1, G2, G3 and G4’s F1 scores as shown in “Both
Tasks” are greater than those from “Suturing” and “Needle
Passing.” For G6, the GST* model achieves comparable
results to “Suturing” (0.86 vs. 0.90), but better results than
“Needle Passing” (0.86 vs. 0.43). For the LSTM network,
the F1 scores in “Both Tasks” are comparable or greater than
those for G1, G2, and G3 in Suturing and for G1, G3, G4,
and G6 in Needle Passing. The F1 scores of the Siamese-
CNN and Siamese-LSTM in “Both Tasks” are greater than
those in “Suturing” and “Needle Passing” for all gestures.
Observation 2: The baseline G*T* model can achieve
better performance than GSTS models, but GST* mod-
els achieve better performance than the baseline. The
performance of the baseline classifier trained with all the
data without the knowledge of gestures and tasks is shown
in Figures [3a] and [3b] as black lines. For the LSTM network,
we observe that the baseline has better performance than the
GSTS models for G1 and G2 in the Suturing task, and G1,
G4, and G6 in the Needle Passing task. For the Siamese-
LSTM network, the baseline has better performance in Gl
and G2 for the Suturing task, and for all gestures in the
Needle Passing task. This increase in performance is likely
due to an increase in the number of training samples. Because
the network sees more trajectory examples, it learns to better
differentiate normal and erroneous trajectories. From Figures
[3a] and [3bl we also note that the performance of the baseline
is better than the G*TS-S and G*TS-N models shown as
dashed lines for the LSTM network, but for the Siamese-
LSTM network the baseline performance is worse. This
could be because training with more varied data confuses the
Siamese network, since it calculates dual input differences
and performs voting to determine the final result. We will
focus on the comparison between GSTS, GST* and G*TS in
Section However, the GST* models (shown in Figures
and [3b] with the green bars) still perform better than
the baseline or the G*TS models in most cases. When we

combine gestures from both tasks, we increase the number
of gesture specific training samples. In order to investigate
the similarity of normal gestures between tasks, we used
KL divergence to quantify the difference in the distributions
of the kinematic variables before data pre-processing. In
Figure [2b] the outlined black squares show the pairwise
KL-divergence between distributions of the same gestures
from two different tasks. These values are the smallest in
the rows for G1, G4, and G6. Also in G2 and G3, 0.76
and 1.47 are smaller than most other elements in the row.
A similar pattern holds when comparing Needle Passing to
Suturing, but Needle Passing gestures are more similar to
other Needle Passing gestures of different types. This shows
that the gestures from Suturing are more similar to the same
gestures in Needle passing than gestures of different types
in the two tasks.

Insight 2: Increasing the amount of training data by
adding more relevant data (e.g., data from the same
gesture class) improves the performance more than adding
more irrelevant data.

Observation 3: GST* models can achieve better results
than GSTS models and the baseline G*T* model despite
having lower error percentages. From the insights of
the GSTS training in the previous section, we noted that
higher error percentage correlated with better performance.
However, we observe that the GST* LSTM obtains a higher
F1 score for G1 (0.72) with an error percentage of 32%
compared to the GSTS LSTM models for Suturing (0.52,
28%) and Needle Passing (0.52, 37%). This is also true for
G3 where the GST* LSTM obtains an F1 score of 0.83
with an error percentage of 36% and outperforms the GSTS
LSTM models for Suturing (0.73, 51%) and Needle Passing
(0.75, 15%). In Figure the Siamese-LSTM network also
has higher F1 scores and lower error percentages for the
GST#* models for all gestures. We also calculated the error
percentages for the G*T* model (baseline), which is 43%
for the black lines in both figures. We observe that GST*
models (green bars in Figure [3a and Figure sometimes
achieve better performance than the baseline despite being
trained on smaller datasets with lower error percentages (e.g.,
G1 and G3 in Figure [3a ; G1, G2 and G3 in Figure [3b).

Insight 3: Increasing the amount of relevant training data
from the same gesture class improves the performance
more than adding more error examples.

Observation 4: Dual input Siamese networks perform
better than their corresponding single input network
structures with GST* training. We compared the perfor-
mance among the four networks with GST* training. In
Figure we observe that the average F1 scores for the
Siamese networks are higher than their corresponding single
networks. Siamese networks may perform better because
of their double input structure that enables comparing and
learning the difference between the two inputs. In addition,
since the Siamese networks use pairs of inputs, the number
of combinations of samples used for training is much greater
than that of the single CNN or LSTM networks.
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E. Gesture Nonspecific and Task Specific G*TS Models

In this experiment, we evaluated the performance of all
the network architectures when trained using the gesture
nonspecific and task specific (G*TS) setup and compared
them to the GSTS and GST* models. To compare the overall
performance of different training setups, we evaluated the
error detection performance by calculating the micro average
F1 scores which provide a general performance metric and do
not consider the individual performance for specific gestures.

Observation 1: G*TS training improves performance
compared to GSTS training. However, GST* models have
better performance than G*TS and GSTS models even
though the training dataset for G*TS training is larger.
In Table [l G*TS training has a higher micro F1 score
than GSTS training for the Suturing task except for the
CNN network. Similarly, for the Needle Passing task, G*TS
training has a higher micro F1 score than GSTS except for
the LSTM network. This is most likely due to an increase
in the number of training samples when all gestures are
combined to train a single model for each task. However,
GST* training leads to the best micro F1 score compared to
G*TS and GSTS training for all networks. In this case, the
amount of data for GST* training is smaller than the G*TS
training as shown in the “Data” row in Table [[I} This could
be because increasing the relevant data from the same gesture
class helps improve the network performance in comparison
with just increasing the amount of training data (similar to
Insight 2 from the previous experiment).

Observation 2: Dual input Siamese networks perform
better than single networks with G*TS training. As shown
in Table [, the Siamese-CNN has a greater micro F1 score
than the CNN network for Suturing (0.79 vs. 0.72) and
Needle Passing (0.74 vs. 0.56). The Siamese-LSTM also has
a greater micro F1 score than the LSTM for Suturing (0.87
vs. 0.60) and Needle Passing (0.81 vs. 0.56).

Insight 4: Dual input Siamese networks achieve better
performance likely due to their dual input structure that
enables comparing normal/erroneous and normal/normal
pairs of trajectories and learning models that better dif-
ferentiate erroneous trajectories

V. DI1SCUSSION AND CONCLUSION

This paper evaluated the performance of dual input
Siamese networks versus single CNN and LSTM network

architectures for the task of erroneous gesture detection. We
compared different training setups to assess how various
levels of contextual knowledge on gestures and tasks affect
the performance of each network. Our results show that the
dual Siamese networks achieve higher accuracy than their
corresponding single CNN and LSTM networks in most
cases using the GST* and G*TS training setups.

On the other hand, Siamese networks suffer from higher
computational complexity than single networks. The single
CNN networks take less computation time than LSTM
networks across different training setups and gesture classes
(avg. 0.50 ms vs. 1.26 ms). For both the Siamese-CNN and
Siamese-LSTM networks, the computation time per window
was proportional to the size of training data. This is because
the Siamese networks pair each unknown window with all
the known windows from the training data for voting and,
thus, process more data at runtime. Also, Siamese-LSTM had
much larger avg. computation time compared to Siamese-
CNN across training setups and gestures (avg. 14.95 ms
vs. 1.86 ms). This is because of hundreds of hidden states
within the three LSTM layers that each must be computed
sequentially. However, for the Siamese-CNN, outputs from
the convolutional layers can be calculated in parallel on the
GPU. Thus, for runtime error detection, using Siamese-CNN
networks might be preferred and the parallel implementation
of the Siamese models on GPU accelerators is required.

Our results also show that despite having fewer training
samples, gesture specific models achieve better accuracy
than generalized gesture nonspecific models. This further
motivates the importance of developing models and labeled
datasets that focus on gestures as the building blocks of
procedures, their distributional similarities, and their unique
error modes [1]. However, for runtime error detection using
a gesture specific model, a gesture classifier is needed to
first determine the gesture class for the input window [35].
The extra computation time needed for gesture classification
might negatively impact the performance and timeliness of
error detection [14]. In addition, the gesture classifier might
misclassify a given gesture, leading to the execution of an
error detector that does not correspond to the gesture.

Future work will focus on a more in-depth evaluation
of the performance of the end-to-end gesture-specific error
detection models, including the integration of the gesture
classification and erroneous gesture detection models and
analyzing the trade-offs between timeliness and accuracy.
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