

Abstract— This paper presents a simulation-based safety

training simulator for robot assisted surgery. While adverse

events occur rarely during training, they could be fatal to the

patients if they happen during real surgical procedures and are

not handled properly by the surgical team. In this work we

propose a hardware-in-the-loop robotic surgery simulator with

high fidelity of the robot motion in a simulated environment,

which is capable of reproducing adverse events during surgery.

The proposed simulator is built upon the Raven-II open source

surgical robot, integrated with a simulated surgeon console and

a safety hazard injection engine, which automatically injects

faults into modules of the robot control software. We simulate

representative safety hazards seen in the adverse events, related

to da VinciTM robot, reported to the FDA MAUDE database. A

novel haptic feedback strategy is provided to the operator when

the underlying dynamics differ from the real robot states.

I. INTRODUCTION

The field of surgical robotics has been rapidly expanding
over the last decade [1]. Robot-assisted surgical training is
preferred for a variety of minimally invasive medical
procedures worldwide. As a technique, simulation based
learning and training is gaining acceptance because healthcare
professionals improve performance and reduce errors through
comprehensive medical care simulation [2] [3]. Simulation
can bridge the gap in learning robotic surgery skills without
accidentally harming the patient. LapSim Haptic SystemTM is
a laparoscopic surgery simulator which has realistic hardware
interface and tactile feedback [4]. This simulator focuses on
human-machine interaction but is only used for near-field
non-teleoperated surgery training. Other commercial surgical
simulators on the market such as Mimic’s dV-TrainerTM [5]
and Simulated Surgical System’s RoSS [6], provide basic
motor skills training modules using virtual reality with
surgeon console similar to the da Vinci surgical system, to
provide life-like simulation and help prepare surgeons. Fig. 1
shows these simulators’ profiles. However, a key issue with
simulation based surgical training is the lack of safety-critical
incident scenarios in simulation-based curricula, which is
critical in bringing this form of surgical education to practice.
Our previous study of adverse events reported to the U.S.
Food and Drug Administration (FDA) Manufacturer and User
Facility Device Experience (MAUDE) database, showed that
despite significant improvements in robotic surgery
technology through the years and broader adoption of the
robotic approach, there are ongoing occurrences of safety

1Department of Mechanical Engineering, xiaoli16@illinois.edu
2Department of Electrical and Computer Engineering,

{alemzad1,dchen8, kalbarcz, rkiyer}@illinois.edu)

 3Department of Industrial and Enterprise Systems Engineering,

kesh@illinois.edu
University of Illinois, Urbana, IL, 61801, USA

incidents that negatively impact patients. The number of
injury and death events per procedure has stayed relatively
constant since 2007, with an average of 83.4 events per
100,000 procedures [7]. The ability of current robotic surgery
technology to automatically mitigate the impact of
safety-related incidents is not comparable to the situation in
other safety critical industries, such as commercial aviation. In
such industries, great effort has been spent over the years on
improving safety practices by providing comprehensive
simulation-based training that includes operation in the
presence of safety-critical failures [8]. However, in current
robotic surgeon training, the emphasis has been only on
improving surgical skills and not on handling safety-critical
events and responding to technical problems. Adverse events
or machine failures are rarely used as potential scenarios for
safety training of surgical teams.

Motivated by the idea of simulating safety hazards [9] [10]
during robotic surgery training in order to prepare surgeons for
handling safety-critical events, we created a
hardware-in-the-loop simulator platform. The objective is to
demonstrate the feasibility of using software-based fault
injection to simulate realistic safety hazard scenarios in a
simulated surgical environment and to provide awareness of
the impeding hazards to the operator through haptic force
feedback. In this work, we use Raven-IITM [11] surgical robot
as the hardware that the operator will be trained with. We
believe that the skills are transferable to da Vinci system [12].
We develop a separate robot dynamical model to run
simultaneously with the Raven-II robot as the robot’s nominal
states estimator (fault free run), and a safety hazard injection
engine that inserts faults to the robot control software after the
system’s automatic safety checks are performed. This way the
chances the inserted fault will cause a surgeon visible system
error or safety hazards is high.

This paper is organized as follows: Section II describes the
architecture of our simulator system. Section III reviews the
Euler-Lagrange approach of Raven-II robot dynamics
modeling and describes the haptic force feedback mechanism.
Section IV introduces the safety hazard injection engine used
to create adverse events and its integration with the Raven-II
software. Section V presents the experimental results and
discusses the effectiveness of robotic surgeon training with
our new simulator. Concluding remarks are given in Section
VI, in which we summarize our results and the future
directions of our research.

II. SIMULATOR SYSTEM ARCHITECTURE

A. System Overview

We design the simulator system based on the Raven-II
surgical robot, an open source platform running on top of

A Hardware-in-the-loop Simulator for

Safety Training in Robotic Surgery

Xiao Li1, Homa Alemzadeh2, Daniel Chen2, Zbigniew Kalbarczyk2,

Ravishankar K. Iyer2, Thenkurussi Kesavadas3

Robot Operating System (ROS). To develop a surgical
simulator with high fidelity in reproducing adverse events, we
include the robot hardware in the simulator’s execution loop
and integrate it with a safety hazard injection engine [13]. The
simulator system architecture is shown in Fig. 2. Raven-II is a
tele-operated surgical robot which uses network
communication between the local machine on surgeon’s
console side and the remote Raven computer. The simulator
runs on the local machine and performs kinematics, dynamics,
and collision detection calculations. Two Phantom Omni
devices receive the incremental motion command from the
operator, then send the data to both the local machine and the
remote machine through UDP/IP. A virtual Raven robot and
3D surgery environment are displayed on the screen of
surgeon’s console. The graphics are rendered through C++
OpenGL pipeline with a rendering frequency of 30Hz, while
other calculations using multiple threads and network sockets
are being synchronized and run at 1000Hz, which is the same
as the running frequency of Raven’s control loop.

The connection between the Surgeon Console and the
Raven-II system is two-way network communication in our
hardware-in-the-loop simulator shown in Fig. 2. One direction
is for transmitting Omni command data from the local
machine to the remote Raven system, while the other direction
is the reverse, for sending the robot state data (joint positions
and velocities) back to the local machine using TCP/IP socket
connection for reliability and to make comparison with the
dynamics calculation results. The haptic force feedback is
provided to the operator if the virtual and real Raven’s
end-effector trajectories do not match (above a predefined
threshold). Since perfect transparency (master device
force/torque matching the slave’s end-effector force/torque) is
not possible, and is especially challenging for teleoperators
with significant nonlinear dynamics and no force sensors
mounted at the robot end-effector, we utilize haptics feature
for safety propose, rather than for surgical palpation. Because
the haptic device sensor/actuator asymmetries can cause
instability and robustness issues, we apply a spring-damper
model with appropriate gains and saturations for feedback
force calculation.

To simulate the safety hazards in real surgery, we integrate
the robot control software with a safety hazard injection
engine that strategically inserts faults into the control software
at critical junctures during operation [13]. More explicitly, the
injected faults corrupt either the Omni commands or the motor
control commands sent to the Raven hardware after the safety
checks are done in the software. As a result, unexpected robot
motion will generate trajectory errors compared with the
underlying model dynamics. Then we show how the operator
can gain awareness of the erroneous robot trajectory in
presence of faults through haptic force feedback.

B. Other Capabilities of Hardware-in-the-loop Simulator

Beyond the capability of basic motor skills training and
simulating adverse events, there are additional features in
simulator that can help improve the surgeon’s performance in
real surgery. For example, in some scenarios, it is preferable to
let the surgeon do a virtual trial, rather than manipulating the
actual robot all the time. One of the important capabilities of
our simulator is to allow the user to disengage from the actual
robot to do a trial movement in the simulator’s virtual
environment and see the outcomes of virtual motion. If the
outcome is satisfactory, then the actual robot could be
re-engaged to track the recorded command trajectory data and
move in an autonomous fashion. A foot pedal is placed in the
surgeon’s side to enable switching between the robot
teleoperation mode and pure simulation mode (being
disengaged from the robot hardware), and also toggling the
view between the real surgical field and virtual environment.

III. INTERNAL ROBOT DYNAMICS MODELING AND HAPTIC

FORCE FEEDBACK

Raven-II is a 7 degree of freedom (DOF) cable-driven
robot, two instrument arms are independent from each other in
terms of assembly and controls. The motors for each arm are
mounted on the chassis, and pulleys and low-stretch stainless
steel cable connect each robot link and motor capstan.
Previous work modeled the system dynamics from motor
torque input to joint states by adapting an Unscented Kalman
Filter, and estimating cable tension parameters for better joint
state estimation [14]. In [15] machine learning methods are
used to achieve more accurate positioning and kinematic chain
calculations while ignoring dynamics. In this work, the robot
dynamics is modeled for all 7 DOF, with the last two DOF
simplified (two jaws of the grasper), compared to only 3 DOF
were modeled in [14]. Our dynamic model is from joint torque
to joint states, ignoring the motor dynamics and cable
tensions. One reason for doing this is that the cable coupling
introduces uncertainties in the model and non-uniformity of
cable tension behaviors. In our setting, we tighten the cables as
tight as possible before the testing. Another reason is because
the system is running at a 1000 Hz frequency, which gives
very little margin for heavy computation and introducing even
a small time delay will cause system instability. Although the
dynamics calculation is done on the Surgeon Console machine
rather than the Raven computer, we still do not want to violate
the timing constraints in each control loop.

Fig. 2. Hardware-in-the-loop Surgical Simulator Architecture.

Fig. 1. From left to right: LapSim Haptic System, dV-trainer, and RoSS.

A. E-L Approach of Modelling Open Chain Dynamics

We obtain the mass, inertia tensor, center of mass position
for each link by using the robot CAD model files. The system
of second order ordinary differential equation are established
through Euler-Lagrange approach [16]:

 𝑀(𝑥)�̈� + 𝐶(𝑥, �̇�) + 𝐺(𝑥)
= 𝜏 − diag(�̇�)𝐾𝑣 − diag(𝑠𝑖𝑔𝑛(�̇�))𝐾𝑐

(1)

 �̈� = 𝜇 (2)

In which 𝑥 represents the 10 dimensional state vector, 𝐶 are
the Coriolis and centrifugal and 𝐺 is the gravity term. 𝐾𝑣 and
𝐾𝑐 stand for the viscous friction and coulomb friction
coefficients [14]. The rest two DOF are modeled as simple
double integrator model as shown in (2), which represents the
two jaws’ rotation dynamics.

The joint torque vector 𝜏 is the controller output based on
desired joint position obtained through inverse kinematics and
current joint position. PD controllers are used for joint 1, 2, 4,
5, 6, 7, and PID is used for joint 3, which is the tool insertion
translational joint. A set of manually tuned PID gains make
this system closely track the desired joint positions while
keeping the joint torque/force 𝜏 within certain bounds. This
means the model is behaving like the robot rather than a
system which has low damping and is fast enough to track
signal. Fig. 3. shows the trajectories for arbitrary motions
provided by the operator (black), the internal dynamic model
calculations (red), and the real robot running data(blue) for the
first five joints on the left robot arm (the right arm is identical
to the left arm in terms of modeling and control), and through
forward kinematics chain one can obtain the end-effector
position error. In Fig. 3, different portion of the trajectories
(separated with dashed lines) correspond to different

teleoperation scaling factors, respectively, ranging from 0.05
to 0.2 with spacing interval of 0.05. With larger motion scaling
factors, the error also increases, because the modeling error for
joints 4 and 5 are more sensitive to the scaling factor.

B. Spring Damper Model for Haptic Force Feedback

 In this section, we present the force feedback control

mechanism. The use of haptic devices in teleoperated surgical

robots has the potential of providing both cutaneous (tactile)

and kinesthetic (force) information during exploration or

manipulation of an object or environment. To the best of the

authors’ knowledge, even the latest commercial surgical

system (da Vinci Xi) does not have haptic feedback feature.

In robotic surgery, haptic feedback is useful in teleoperated

palpation [17] [18]. Beyond this application, we expect that

haptic feedback also can provide extra but crucial information

to the operator about the status of the system when some

uncertain events happen and before errors are accumulated to

some degree without notice the system is taken to emergency

stop. For human perception, our haptic rendering loop in the

simulator also runs at 1000Hz, otherwise the user may

perceive force discontinuities and a loss in fidelity [19].

 We send the published joint states in the Raven computer

to the simulator through network. From the dynamic

equations we extract the joint velocities from the estimated

state vector. We compute the end-effector velocities by using

spatial manipulator Jacobian transformation:
 [𝑣 𝜔]𝑇 = 𝐽�̇� (3)

The end-effector position is computed through the forward
kinematics chain for both the robot and the model using the
joint positions, as shown in (4):

 𝑝 = 𝑓(𝜃) (4)

Fig. 3. Comparison of the model and robot running data (up to 5 joints), and end-effector position error of (2.43 ± 1.72)𝑚𝑚

where 𝑓 indicates the forward kinematics chain of the robot
[20]. Then the haptic force provided to the operator is given
by:

𝐹 = {

𝐾𝑝(𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡) + 𝐾𝑑(𝑣𝑚𝑜𝑑𝑒𝑙 − 𝑣𝑟𝑜𝑏𝑜𝑡)

0.05, if ‖𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡‖ > 𝑡𝑜𝑙

(5)

And the force direction applied to the haptic device is given
by:

 𝑑 =
𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡

‖𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡‖

(6)

In this setup, if an adverse scenario happens, or the robot
moves in an unexpected way, the haptic device will provide
haptic cues to the operator. This provides awareness of
impeding hazards, enabling the operator to take action or
correct the robot behavior based on the internal model of the
simulator.

IV. SAFETY HAZARD INJECTION

Software-implemented fault injection (SWIFI) [21] is

commonly used for evaluating the safety and reliability of

computing systems. SWIFI validates the effectiveness of

fault-tolerance mechanisms by studying the behavior of a

system in the presence of faults. Here we use software-based

fault-injection techniques to enable evaluation of human

operator performance and response to safety hazards in

simulation-based training.

Based on our preliminary review of almost 1,500 accident

reports on the da Vinci surgical system from the FDA

MAUDE database, we identified three common safety hazard

scenarios shown in Table 1. We simulate these scenarios by

injecting faults into the Raven control software. The possible

causes of hazards may include accidental faults in robotic

hardware or software or unintentional human operator errors.

For each safety hazard, the Table 1 shows the potential causes

and impact on patients based on representative examples

from the real incidents reported to the MAUDE database.

Those patient impacts represent clinical scenarios on which

the robotic surgeons should be trained on.

 The Safety Hazard Injection Engine consists of customized

modules for a) retrieving hazard scenarios, b) generating

software fault injection campaign and selecting fault injection

strategy, c) conducting fault injection experiments, and d)

logging and collecting data in an automated fashion [10]. The

Injection Controller is responsible for starting, stopping and

automating the fault injection campaign. In a normal

campaign execution, a Safety Hazard Scenario Library

constructed based on the analysis of adverse events is

accessed to retrieve the list of desired hazard scenarios. Then

causal factors leading to each desired hazard scenario are

simulated by selecting the fault injection parameters. Each

hazard scenario includes a possible unsafe control action and

a list of potential causal factors. An example unsafe control

action would be a motor command is provided by the control

software when there is a mismatch between the software state

and hardware state of the robot. Faulty communication

between software and hardware (e.g. through USB) is an

example causal factor that might lead to such unsafe control

action (see the third example in Table 1). Based on the causal

factors involved in each hazard scenario, the analysis of

Raven source code, and software/hardware architecture, the

Fault-Injection Strategies module retrieves information on

software functions which can most likely mimic the causal

factors leading to the safety hazard, as well as the key

variables in those functions and their normal operating

ranges. This information is translated to the parameters to be

used by the fault injectors for simulating potential causal

factors. The fault injection parameters include the location in

the software function, the trigger or condition under which

the fault should be injected and the target variables to be

modified by the injection. Finally, the appropriate

software-implemented Fault Injectors and the robot software

Safety Hazard

 Scenario

(Outcome)

Unsafe

Control Action

Example

Possible Causal

Factors
(Accidental Failures)

Raven-II Simulation Patient Impact

(Clinical Scenarios

for Safety Training)

[Example]

Target

Software

Module

Target

Variables

System temporarily
unavailable

(Recoverable

System Error)

A user command is provided but

not followed by the robot

Improper

operator actions or

console control
malfunctions

Network-Layer

Thread
(network_layer)

User-desired

-Position

-Orientation
-Grasper angle

-Foot pedal

 Restart the system

[MAUDE 3293519]

Troubleshoot error

Contact manufacturer

System permanently

unavailable

(Non-Recoverable
System Error)

A motor command is provided by
the robot control, but it is not

followed by the motors.

Sensor (encoder)

failure

Control

Thread

(get_USB_packet)

USB Board

-address

-returned status

 Convert the procedure

[MAUDE 2663924]

Reschedule

[MAUDE 3275500]

Report to manufacturer

Actuator failures

Control

Thread

(put_USB_packet)

USB Board
-address

-returned status

Unintended

movement of robotic

arms

(Sudden Jump)

A command is provided by the

robot control to motors while the
calculated next position is at large

distance (big jump) from current
position.

Commands to

robot joints

Puncture of artery

[MAUDE 1590517]

Bleeding of uterine tube

[MAUDE 2120175]

 Table 1. Three common safety hazard scenarios, with corresponding examples from real incidents reported to the FDA MAUDE database.

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=3293519
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/detail.cfm?mdrfoi__id=2663924
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=3275500
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=1590517
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=2120175

are executed to conduct a fault injection experiment during

robot operation. At the end of each injection run, the injection

parameters and data are collected for further analysis. For a

more detailed description of Safety Hazard Injection Engine

refer to [10].

V. EXPERIMENTAL RESULTS AND INSIGHTS

Many of the hazard scenarios shown in Table 1 may cause
unexpected instrument movements and sudden jumps. Using
the technique introduced in the previous section, we created a
safety hazard injection engine that is capable of intentionally
injecting unsafe robot state to the robot control software. In
this section, we use the safety hazard injection engine to
trigger the faulty commands at network layer and software
hardware communication layer as in [13]. More specifically,
to simulate the resulting safety hazard scenarios, we corrupt
the motor commands sent to the robot hardware and the Omni
commands sent to the Raven computer, as indicated in Fig. 2.

A. Fault Injection to Robot Software

In the experimental setup, we inject periodic faults to i) the
first (shoulder) joint of the robot (which has stronger cable in
the Raven-II), and ii) the motion command data in network
layer transmitting from the local machine to Raven computer,
while the simulator receives the original “clean” Omni input.
In the second case (in Fig. 2), it is obvious that receiving the
corrupted desired state data, the robot will follow the incorrect
trajectory and end up deviating from the trajectory expected
by the operator. From the fault-free run result as shown in Fig.
3, we set the threshold of triggering the haptic force feedback
when the end-effector positions between the model and the

robot deviate more than 3mm. In this section, we mainly focus
on simulating and analyzing the resulting adverse events in the
first case (i.e., injection of periodic faults to the motor
commands).

B. Simulation of Sudden Jump

In robotic surgery, many reported adverse events can be
classified as unexpected joint motion in a small time interval,
i.e. sudden jump (third scenario in Table 1). Although the
causality can be many to one, we are able to reproduce this
kind of adverse events and expose the surgeon during training
phase by using our hardware-in-the-loop simulator
incorporated with the safety hazard injection engine. We use
haptic force feedback to provide information to the operator
immediately, so that they can respond to the adverse events as
quickly as possible, by emergency actions such as release the
foot pedal to disengage the robot and triggering motor breaks
(to avoid patient injuries). To simulate robot jump, during the
teleoperation running mode, we inject constant motor
command (can be zero or nonzero but within the valid range of
motor’s DAC command) to the shoulder joint at a specified
time period. The underlying reason for jump is the
accumulation of position errors, because the controller has to
generate large torque commands to track the desired position
once the robot goes back to the nominal run.

Fig. 4 shows the result of our hardware-in-the-loop
simulator running with the fault injector. Every 8-second after
pedal down (teleoperation mode), we corrupt the motor
command which is used to control the shoulder joint and keep
the fault active for 300 cycles (300ms). One can observe the
sudden jump behavior happened in joint 1 profile in Fig. 4.

Fig. 4. Robot and model trajectories during fault injection is enabled (with teleoperation scaling factor of 0.1)

The sudden jumps can happen many times (in this experiment,
4 times), while the operator may not notice since the duration
is quite short (a few milliseconds). Such abrupt jumps if only
happen a few times during the procedure, they will leave no
impression to the operator and he may even think it is his own
mistake. However, the sudden movements/jumps may happen
due to hardware problems (see Table 1). The robot has the
safety mechanisms to monitor the robot status and detect such
faults, but in our fault injection experiments we demonstrated
the robot can jump frequently without triggering the robot’s
safety mechanisms [10] [13] (e.g., the robot stopped at the last
jump due to the computed motor control is beyond the limit).

Fig. 5 shows the magnitude of the haptic force feedback
provided to the Omni device using (5). The results show that
we captured the adverse events exactly at the times the fault
injection was performed, and provided feedback to the user in
time. When a surgeon faces such scenario in real surgery,
possible mitigation strategies include slow down the motions
or release the pedal to disengage the master and slave and call
the technical help in the hospital (see last column of Table 1).

VI. CONCLUSION AND FUTURE WORK

With the goal of providing high-fidelity surgical training in

simulation, we created a hardware-in-the-loop simulator

platform. A full robot dynamic model at joint level enabled

us to do the dynamic simulation to mimic the real robot

behavior independently. We developed a safety hazard

injection engine integrated with the Raven-II robot system

and simulator software to reproduce safety hazards happened

in real surgery. A haptic force feedback mechanism was

designed to provide surgeon an extra modality of information

about the robot status when unexpected motion happens.

Delivering the safety alarm to the surgeon by haptics is an

efficient way of capturing such occurrences but will need

additional human factor studies.

We have demonstrated a general framework for

robot-assisted surgical simulators for a more robust and

resilient robotic surgery. Future work to further enhance the

capabilities of our simulator would include: (1) better

modeling of robot full dynamics including the uncertainties

of cable mechanisms; (2) implementing a richer library of

safety hazard scenarios to reproduce them in simulation; and

(3) human factor studies with control groups to understand

the efficacy of the haptic based safety training in order to

verify the practical value of the proposed simulator.

ACKNOWLEDGMENT

This work was partially supported by the National
Science Foundation under Award Numbers CNS 13-14891

and CNS 15-45069, and a grant through the JUMP-ARCHES
(Applied Research for Community Health through
Engineering and Simulation) program for addressing safety
and reliability of surgical robots. This project was carried out
at the Health Care Engineering Systems Center at Illinois.

REFERENCES

[1] G. Spinoglio, Ed., Robotic Surgery: Current Applications and New
Trends, Springer, 2015.

[2] M. Passiment, H. Sacks and G. Huang, "Medical Simulation in Medical

Education: Results of an AAMC Survey," 2011.

[3] Y. Okuda, E. O. Bryson and e. al., "The utility of simulation in medical

education: what is the evidence?," Mount Sinai Journal of Medicine,

vol. 76, no. 4, pp. 330-343, 2009.

[4] "www.surgical-science.com/portfolio/haptic-system/," [Online].

[5] "www.mimicsimulation.com/products/dv-trainer/," [Online].

[6] "www.simulatedsurgicals.com/ross.html," [Online].

[7] H. Alemzadeh, J. Raman, N. Leveson, Z. Kalbarcyzk and R. K. Iyer,

"Adverse events in robotic Surgery: A retrospective study of 14 years of
FDA data," PLOS ONE, vol. 11, no. 4, pp. 1-20, 2014.

[8] F. F. Bilotta, S. M. Werner, S. D. Bergese and G. Rosa, "Impact and

Implementation of Simulation-Based Training for Safety," The
Scientific World, vol. 2013, 2013.

[9] H. Alemzadeh, D. Chen, Z. Kalbarczyk, R. K. Iyer, X. Li, T. Kesavadas

and J. Raman, "A Software Framework for Simulation of Safety
Hazards in Robotic Surgical Systems," in Special Issue on Medical

Cyber Physical Systems Workshop , 2015.

[10] H. Alemzadeh, D. Chen, A. Lewis, Z. Kalbarczyk, J. Raman, N.
Leveson and R. K. Iyer, "Systems-theoretic Safety Assessment of

Telerobotic Surgical Systems," in In the 34th International Conference

on Computer Safety, Reliability, and Security (SAFECOMP), 2015.

[11] "applieddexterity.com/," [Online].

[12] "Raven surgical robot training in preparation for da Vinci," in Medicine

Meets Virtual Reality 21, 2014, pp. 135-141.

[13] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. T. Kalbarczyk and R.

K. Iyer, "Targeted Attacks on Teleoperated Surgical Robots: Dynamic

Model-based Detection and Mitigation," in The 46 IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)

, 2016.

[14] M. Haghighipanah, Y. Li, M. Miyasaka and B. Hannaford, "Improving
position precision of a servo-controlled elastic cable driven surgical

robot using Unscented Kalman Filter," in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2015.

[15] J. Mahler, S. Krishnan, M. Laskey, S. Sen, A. Murali, B. Kehoe, S. Patil,

J. Wang, M. Franklin, P. Abbeel and K. Goldberg, "Learning accurate

kinematic control of cable-driven surgical robots using data cleaning
and Gaussian Process Regression," in IEEE International Conference

on Automation Science and Engineering (CASE), 2014.

[16] R. M. Murray, Z. Li and S. S. Sastry, A Mathematical Introduction to

Robotic Manipulation, 1994.

[17] L. N. Verner and A. M. Okamura, "Force & torque feedback vs force

only feedback," in EuroHaptics conference, 2009.

[18] J. C. Gwilliam, M. Mahvash, B. Vagvolgyi, A. Vacharat, D. D. Yuh and

A. M. Okamura, "Effects of haptic and graphical force feedback on

teleoperated palpation," in IEEE International Conference on Robotics
and Automation, 2009.

[19] OpenHaptics Toolkit Programmers Guide.

[20] "Kinematic Analysis of the Raven-II Research Surgical Robot Platform
(REV: 9-Mar-2015)".

[21] M.-C. Hsueh, T. K. Tsai and R. K. Iyer, "Fault injection techniques and

tools," Computer, vol. 30, no. 4, pp. 75 - 82, 1997.

Fig. 5. Haptic force feedback on the Omni device during fault injection

