
  

 

Abstract— This paper presents a simulation-based safety 

training simulator for robot assisted surgery. While adverse 

events occur rarely during training, they could be fatal to the 

patients if they happen during real surgical procedures and are 

not handled properly by the surgical team. In this work we 

propose a hardware-in-the-loop robotic surgery simulator with 

high fidelity of the robot motion in a simulated environment, 

which is capable of reproducing adverse events during surgery. 

The proposed simulator is built upon the Raven-II open source 

surgical robot, integrated with a simulated surgeon console and 

a safety hazard injection engine, which automatically injects 

faults into modules of the robot control software. We simulate 

representative safety hazards seen in the adverse events, related 

to da VinciTM robot, reported to the FDA MAUDE database. A 

novel haptic feedback strategy is provided to the operator when 

the underlying dynamics differ from the real robot states. 

I. INTRODUCTION 

The field of surgical robotics has been rapidly expanding 
over the last decade [1].  Robot-assisted surgical training is 
preferred for a variety of minimally invasive medical 
procedures worldwide. As a technique, simulation based 
learning and training is gaining acceptance because healthcare 
professionals improve performance and reduce errors through 
comprehensive medical care simulation [2] [3]. Simulation 
can bridge the gap in learning robotic surgery skills without 
accidentally harming the patient. LapSim Haptic SystemTM is 
a laparoscopic surgery simulator which has realistic hardware 
interface and tactile feedback [4]. This simulator focuses on 
human-machine interaction but is only used for near-field 
non-teleoperated surgery training. Other commercial surgical 
simulators on the market such as Mimic’s dV-TrainerTM [5] 
and Simulated Surgical System’s RoSS [6], provide basic 
motor skills training modules using virtual reality with 
surgeon console similar to the da Vinci surgical system, to 
provide life-like simulation and help prepare surgeons. Fig. 1 
shows these simulators’ profiles. However, a key issue with 
simulation based surgical training is the lack of safety-critical 
incident scenarios in simulation-based curricula, which is 
critical in bringing this form of surgical education to practice. 
Our previous study of adverse events reported to the U.S. 
Food and Drug Administration (FDA) Manufacturer and User 
Facility Device Experience (MAUDE) database, showed that 
despite significant improvements in robotic surgery 
technology through the years and broader adoption of the 
robotic approach, there are ongoing occurrences of safety 
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incidents that negatively impact patients. The number of 
injury and death events per procedure has stayed relatively 
constant since 2007, with an average of 83.4 events per 
100,000 procedures [7]. The ability of current robotic surgery 
technology to automatically mitigate the impact of 
safety-related incidents is not comparable to the situation in 
other safety critical industries, such as commercial aviation. In 
such industries, great effort has been spent over the years on 
improving safety practices by providing comprehensive 
simulation-based training that includes operation in the 
presence of safety-critical failures [8]. However, in current 
robotic surgeon training, the emphasis has been only on 
improving surgical skills and not on handling safety-critical 
events and responding to technical problems. Adverse events 
or machine failures are rarely used as potential scenarios for 
safety training of surgical teams.  

Motivated by the idea of simulating safety hazards [9] [10] 
during robotic surgery training in order to prepare surgeons for 
handling safety-critical events, we created a 
hardware-in-the-loop simulator platform. The objective is to 
demonstrate the feasibility of using software-based fault 
injection to simulate realistic safety hazard scenarios in a 
simulated surgical environment and to provide awareness of 
the impeding hazards to the operator through haptic force 
feedback. In this work, we use Raven-IITM [11] surgical robot 
as the hardware that the operator will be trained with. We 
believe that the skills are transferable to da Vinci system [12]. 
We develop a separate robot dynamical model to run 
simultaneously with the Raven-II robot as the robot’s nominal 
states estimator (fault free run), and a safety hazard injection 
engine that inserts faults to the robot control software after the 
system’s automatic safety checks are performed.  This way the 
chances the inserted fault will cause a surgeon visible system 
error or safety hazards is high.  

This paper is organized as follows: Section II describes the 
architecture of our simulator system. Section III reviews the 
Euler-Lagrange approach of Raven-II robot dynamics 
modeling and describes the haptic force feedback mechanism. 
Section IV introduces the safety hazard injection engine used 
to create adverse events and its integration with the Raven-II 
software. Section V presents the experimental results and 
discusses the effectiveness of robotic surgeon training with 
our new simulator. Concluding remarks are given in Section 
VI, in which we summarize our results and the future 
directions of our research. 

II. SIMULATOR SYSTEM ARCHITECTURE 

A. System Overview 

We design the simulator system based on the Raven-II 
surgical robot, an open source platform running on top of 
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Robot Operating System (ROS). To develop a surgical 
simulator with high fidelity in reproducing adverse events, we 
include the robot hardware in the simulator’s execution loop 
and integrate it with a safety hazard injection engine [13].  The 
simulator system architecture is shown in Fig. 2. Raven-II is a 
tele-operated surgical robot which uses network 
communication between the local machine on surgeon’s 
console side and the remote Raven computer. The simulator 
runs on the local machine and performs kinematics, dynamics, 
and collision detection calculations. Two Phantom Omni 
devices receive the incremental motion command from the 
operator, then send the data to both the local machine and the 
remote machine through UDP/IP. A virtual Raven robot and 
3D surgery environment are displayed on the screen of 
surgeon’s console. The graphics are rendered through C++ 
OpenGL pipeline with a rendering frequency of 30Hz, while 
other calculations using multiple threads and network sockets 
are being synchronized and run at 1000Hz, which is the same 
as the running frequency of Raven’s control loop. 

The connection between the Surgeon Console and the 
Raven-II system is two-way network communication in our 
hardware-in-the-loop simulator shown in Fig. 2. One direction 
is for transmitting Omni command data from the local 
machine to the remote Raven system, while the other direction 
is the reverse, for sending the robot state data (joint positions 
and velocities) back to the local machine using TCP/IP socket 
connection for reliability and to make comparison with the 
dynamics calculation results. The haptic force feedback is 
provided to the operator if the virtual and real Raven’s 
end-effector trajectories do not match (above a predefined 
threshold). Since perfect transparency (master device 
force/torque matching the slave’s end-effector force/torque) is 
not possible, and is especially challenging for teleoperators 
with significant nonlinear dynamics and no force sensors 
mounted at the robot end-effector, we utilize haptics feature 
for safety propose, rather than for surgical palpation. Because 
the haptic device sensor/actuator asymmetries can cause 
instability and robustness issues, we apply a spring-damper 
model with appropriate gains and saturations for feedback 
force calculation. 

To simulate the safety hazards in real surgery, we integrate 
the robot control software with a safety hazard injection 
engine that strategically inserts faults into the control software 
at critical junctures during operation [13]. More explicitly, the 
injected faults corrupt either the Omni commands or the motor 
control commands sent to the Raven hardware after the safety 
checks are done in the software. As a result, unexpected robot 
motion will generate trajectory errors compared with the 
underlying model dynamics. Then we show how the operator 
can gain awareness of the erroneous robot trajectory in 
presence of faults through haptic force feedback. 

B. Other Capabilities of Hardware-in-the-loop Simulator 

Beyond the capability of basic motor skills training and 
simulating adverse events, there are additional features in 
simulator that can help improve the surgeon’s performance in 
real surgery. For example, in some scenarios, it is preferable to 
let the surgeon do a virtual trial, rather than manipulating the 
actual robot all the time. One of the important capabilities of 
our simulator is to allow the user to disengage from the actual 
robot to do a trial movement in the simulator’s virtual 
environment and see the outcomes of virtual motion. If the 
outcome is satisfactory, then the actual robot could be 
re-engaged to track the recorded command trajectory data and 
move in an autonomous fashion. A foot pedal is placed in the 
surgeon’s side to enable switching between the robot 
teleoperation mode and pure simulation mode (being 
disengaged from the robot hardware), and also toggling the 
view between the real surgical field and virtual environment.  

III. INTERNAL ROBOT DYNAMICS MODELING AND HAPTIC 

FORCE FEEDBACK 

Raven-II is a 7 degree of freedom (DOF) cable-driven 
robot, two instrument arms are independent from each other in 
terms of assembly and controls. The motors for each arm are 
mounted on the chassis, and pulleys and low-stretch stainless 
steel cable connect each robot link and motor capstan. 
Previous work modeled the system dynamics from motor 
torque input to joint states by adapting an Unscented Kalman 
Filter, and estimating cable tension parameters for better joint 
state estimation [14]. In [15] machine learning methods are 
used to achieve more accurate positioning and kinematic chain 
calculations while ignoring dynamics. In this work, the robot 
dynamics is modeled for all 7 DOF, with the last two DOF 
simplified (two jaws of the grasper), compared to only 3 DOF 
were modeled in [14]. Our dynamic model is from joint torque 
to joint states, ignoring the motor dynamics and cable 
tensions. One reason for doing this is that the cable coupling 
introduces uncertainties in the model and non-uniformity of 
cable tension behaviors. In our setting, we tighten the cables as 
tight as possible before the testing. Another reason is because 
the system is running at a 1000 Hz frequency, which gives 
very little margin for heavy computation and introducing even 
a small time delay will cause system instability. Although the 
dynamics calculation is done on the Surgeon Console machine 
rather than the Raven computer, we still do not want to violate 
the timing constraints in each control loop. 

 
Fig.  2.  Hardware-in-the-loop Surgical Simulator Architecture. 

 
Fig.  1.  From left to right: LapSim Haptic System, dV-trainer, and RoSS. 



  

A.  E-L Approach of Modelling Open Chain Dynamics 

We obtain the mass, inertia tensor, center of mass position 
for each link by using the robot CAD model files. The system 
of second order ordinary differential equation are established 
through Euler-Lagrange approach [16]: 

 𝑀(𝑥)�̈� + 𝐶(𝑥, �̇�) + 𝐺(𝑥)  
=  𝜏 − diag(�̇�)𝐾𝑣 − diag(𝑠𝑖𝑔𝑛(�̇�))𝐾𝑐  

 

(1) 

 �̈� = 𝜇 (2) 

In which 𝑥 represents the 10 dimensional state vector, 𝐶 are 
the Coriolis and centrifugal and 𝐺 is the gravity term. 𝐾𝑣 and 
𝐾𝑐  stand for the viscous friction and coulomb friction 
coefficients [14]. The rest two DOF are modeled as simple 
double integrator model as shown in (2), which represents the 
two jaws’ rotation dynamics. 

The joint torque vector 𝜏 is the controller output based on 
desired joint position obtained through inverse kinematics and 
current joint position. PD controllers are used for joint 1, 2, 4, 
5, 6, 7, and PID is used for joint 3, which is the tool insertion 
translational joint. A set of manually tuned PID gains make 
this system closely track the desired joint positions while 
keeping the joint torque/force 𝜏 within certain bounds. This 
means the model is behaving like the robot rather than a 
system which has low damping and is fast enough to track 
signal. Fig. 3. shows the trajectories for arbitrary motions 
provided by the operator (black), the internal dynamic model 
calculations (red), and the real robot running data(blue) for the 
first five joints on the left robot arm (the right arm is identical 
to the left arm in terms of modeling and control), and through 
forward kinematics chain one can obtain the end-effector 
position error. In Fig. 3, different portion of the trajectories 
(separated with dashed lines) correspond to different 

teleoperation scaling factors, respectively, ranging from 0.05 
to 0.2 with spacing interval of 0.05. With larger motion scaling 
factors, the error also increases, because the modeling error for 
joints 4 and 5 are more sensitive to the scaling factor.  

B.  Spring Damper Model for Haptic Force Feedback 

 In this section, we present the force feedback control 

mechanism. The use of haptic devices in teleoperated surgical 

robots has the potential of providing both cutaneous (tactile) 

and kinesthetic (force) information during exploration or 

manipulation of an object or environment. To the best of the 

authors’ knowledge, even the latest commercial surgical 

system (da Vinci Xi) does not have haptic feedback feature. 

In robotic surgery, haptic feedback is useful in teleoperated 

palpation [17] [18]. Beyond this application, we expect that 

haptic feedback also can provide extra but crucial information 

to the operator about the status of the system when some 

uncertain events happen and before errors are accumulated to 

some degree without notice the system is taken to emergency 

stop. For human perception, our haptic rendering loop in the 

simulator also runs at 1000Hz, otherwise the user may 

perceive force discontinuities and a loss in fidelity [19]. 

 We send the published joint states in the Raven computer 

to the simulator through network. From the dynamic 

equations we extract the joint velocities from the estimated 

state vector. We compute the end-effector velocities by using 

spatial manipulator Jacobian transformation: 
 [𝑣 𝜔]𝑇 = 𝐽�̇� (3) 

The end-effector position is computed through the forward 
kinematics chain for both the robot and the model using the 
joint positions, as shown in (4): 

 𝑝 = 𝑓(𝜃) (4) 

Fig. 3. Comparison of the model and robot running data   (up to 5 joints), and end-effector position error of (2.43 ± 1.72)𝑚𝑚 



  

where 𝑓 indicates the forward kinematics chain of the robot 
[20]. Then the haptic force provided to the operator is given 
by: 

 
𝐹 = {

𝐾𝑝(𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡) + 𝐾𝑑(𝑣𝑚𝑜𝑑𝑒𝑙 − 𝑣𝑟𝑜𝑏𝑜𝑡)

0.05, if ‖𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡‖ > 𝑡𝑜𝑙
 

 

(5) 

And the force direction applied to the haptic device is given 
by: 

 𝑑 =
𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡

‖𝑝𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑟𝑜𝑏𝑜𝑡‖
 

(6) 

In this setup, if an adverse scenario happens, or the robot 
moves in an unexpected way, the haptic device will provide 
haptic cues to the operator. This provides awareness of 
impeding hazards, enabling the operator to take action or 
correct the robot behavior based on the internal model of the 
simulator. 

IV. SAFETY HAZARD INJECTION 

Software-implemented fault injection (SWIFI) [21] is 

commonly used for evaluating the safety and reliability of 

computing systems. SWIFI validates the effectiveness of 

fault-tolerance mechanisms by studying the behavior of a 

system in the presence of faults. Here we use software-based 

fault-injection techniques to enable evaluation of human 

operator performance and response to safety hazards in 

simulation-based training.  

Based on our preliminary review of almost 1,500 accident 

reports on the da Vinci surgical system from the FDA 

MAUDE database, we identified three common safety hazard 

scenarios shown in Table 1. We simulate these scenarios by 

injecting faults into the Raven control software. The possible 

causes of hazards may include accidental faults in robotic 

hardware or software or unintentional human operator errors. 

For each safety hazard, the Table 1 shows the potential causes 

and impact on patients based on representative examples 

from the real incidents reported to the MAUDE database. 

Those patient impacts represent clinical scenarios on which 

the robotic surgeons should be trained on.  

 The Safety Hazard Injection Engine consists of customized 

modules for a) retrieving hazard scenarios, b) generating 

software fault injection campaign and selecting fault injection 

strategy, c) conducting fault injection experiments, and d) 

logging and collecting data in an automated fashion [10]. The 

Injection Controller is responsible for starting, stopping and 

automating the fault injection campaign. In a normal 

campaign execution, a Safety Hazard Scenario Library 

constructed based on the analysis of adverse events is 

accessed to retrieve the list of desired hazard scenarios. Then 

causal factors leading to each desired hazard scenario are 

simulated by selecting the fault injection parameters. Each 

hazard scenario includes a possible unsafe control action and 

a list of potential causal factors. An example unsafe control 

action would be a motor command is provided by the control 

software when there is a mismatch between the software state 

and hardware state of the robot. Faulty communication 

between software and hardware (e.g. through USB) is an 

example causal factor that might lead to such unsafe control 

action (see the third example in Table 1). Based on the causal 

factors involved in each hazard scenario, the analysis of 

Raven source code, and software/hardware architecture, the 

Fault-Injection Strategies module retrieves information on 

software functions which can most likely mimic the causal 

factors leading to the safety hazard, as well as the key 

variables in those functions and their normal operating 

ranges. This information is translated to the parameters to be 

used by the fault injectors for simulating potential causal 

factors. The fault injection parameters include the location in 

the software function, the trigger or condition under which 

the fault should be injected and the target variables to be 

modified by the injection. Finally, the appropriate 

software-implemented Fault Injectors and the robot software 

Safety Hazard 

 Scenario 

(Outcome) 

Unsafe 

Control Action 

Example 

Possible Causal 

Factors 
(Accidental Failures) 

Raven-II Simulation Patient Impact 

(Clinical Scenarios  

for Safety Training) 

[Example] 

Target  

Software 

Module 

Target  

Variables 

System temporarily 
unavailable 

(Recoverable 

System Error) 

A user command is provided but 

not followed by the robot  

Improper  

operator actions or 

console control 
malfunctions 

 

Network-Layer 

Thread 
(network_layer) 

User-desired 

-Position 

-Orientation 
-Grasper angle 

-Foot pedal 

 Restart the system 

[MAUDE 3293519] 

 
Troubleshoot error  

Contact manufacturer 

System permanently 

unavailable 

(Non-Recoverable 
System Error) 

A motor command is provided by 
the robot control, but it is not 

followed by the motors.  

Sensor (encoder) 

failure 

Control 

Thread 

(get_USB_packet) 

USB Board 

-address 

-returned status 

 Convert the procedure 

[MAUDE  2663924] 

 
Reschedule 

[MAUDE 3275500] 

 
Report to manufacturer 

Actuator failures 

Control 

Thread 

(put_USB_packet) 

USB Board 
-address 

-returned status 

Unintended 

movement of robotic 

arms 

(Sudden Jump) 

A command is provided by the 

robot control to motors while the 
calculated next position is at large 

distance (big jump) from current 
position.  

Commands to 

robot joints 

Puncture of artery 

[MAUDE 1590517] 

 
Bleeding of uterine tube 

[MAUDE 2120175] 
 

 

 Table 1. Three common safety hazard scenarios, with corresponding examples from real incidents reported to the FDA MAUDE database. 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=3293519
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/detail.cfm?mdrfoi__id=2663924
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=3275500
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=1590517
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.cfm?MDRFOI__ID=2120175


  

are executed to conduct a fault injection experiment during 

robot operation. At the end of each injection run, the injection 

parameters and data are collected for further analysis. For a 

more detailed description of Safety Hazard Injection Engine 

refer to [10]. 

V. EXPERIMENTAL RESULTS AND INSIGHTS 

Many of the hazard scenarios shown in Table 1 may cause 
unexpected instrument movements and sudden jumps. Using 
the technique introduced in the previous section, we created a 
safety hazard injection engine that is capable of intentionally 
injecting unsafe robot state to the robot control software. In 
this section, we use the safety hazard injection engine to 
trigger the faulty commands at network layer and software 
hardware communication layer as in [13]. More specifically, 
to simulate the resulting safety hazard scenarios, we corrupt 
the motor commands sent to the robot hardware and the Omni 
commands sent to the Raven computer, as indicated in Fig. 2. 

A. Fault Injection to Robot Software 

In the experimental setup, we inject periodic faults to i) the 
first (shoulder) joint of the robot (which has stronger cable in 
the Raven-II), and ii) the motion command data in network 
layer transmitting from the local machine to Raven computer, 
while the simulator receives the original “clean” Omni input. 
In the second case (in Fig. 2), it is obvious that receiving the 
corrupted desired state data, the robot will follow the incorrect 
trajectory and end up deviating from the trajectory expected 
by the operator. From the fault-free run result as shown in Fig. 
3, we set the threshold of triggering the haptic force feedback 
when the end-effector positions between the model and the 

robot deviate more than 3mm. In this section, we mainly focus 
on simulating and analyzing the resulting adverse events in the 
first case (i.e., injection of periodic faults to the motor 
commands). 

B. Simulation of Sudden Jump 

In robotic surgery, many reported adverse events can be 
classified as unexpected joint motion in a small time interval, 
i.e. sudden jump (third scenario in Table 1). Although the 
causality can be many to one, we are able to reproduce this 
kind of adverse events and expose the surgeon during training 
phase by using our hardware-in-the-loop simulator 
incorporated with the safety hazard injection engine. We use 
haptic force feedback to provide information to the operator 
immediately, so that they can respond to the adverse events as 
quickly as possible, by emergency actions such as release the 
foot pedal to disengage the robot and triggering motor breaks 
(to avoid patient injuries). To simulate robot jump, during the 
teleoperation running mode, we inject constant motor 
command (can be zero or nonzero but within the valid range of 
motor’s DAC command) to the shoulder joint at a specified 
time period. The underlying reason for jump is the 
accumulation of position errors, because the controller has to 
generate large torque commands to track the desired position 
once the robot goes back to the nominal run. 

Fig. 4 shows the result of our hardware-in-the-loop 
simulator running with the fault injector. Every 8-second after 
pedal down (teleoperation mode), we corrupt the motor 
command which is used to control the shoulder joint and keep 
the fault active for 300 cycles (300ms). One can observe the 
sudden jump behavior happened in joint 1 profile in Fig. 4. 

Fig. 4. Robot and model trajectories during fault injection is enabled (with teleoperation scaling factor of 0.1) 



  

The sudden jumps can happen many times (in this experiment, 
4 times), while the operator may not notice since the duration 
is quite short (a few milliseconds). Such abrupt jumps if only 
happen a few times during the procedure, they will leave no 
impression to the operator and he may even think it is his own 
mistake. However, the sudden movements/jumps may happen 
due to hardware problems (see Table 1). The robot has the 
safety mechanisms to monitor the robot status and detect such 
faults, but in our fault injection experiments we demonstrated 
the robot can jump frequently without triggering the robot’s 
safety mechanisms [10] [13] (e.g., the robot stopped at the last 
jump due to the computed motor control is beyond the limit). 

Fig. 5 shows the magnitude of the haptic force feedback 
provided to the Omni device using (5). The results show that 
we captured the adverse events exactly at the times the fault 
injection was performed, and provided feedback to the user in 
time. When a surgeon faces such scenario in real surgery, 
possible mitigation strategies include slow down the motions 
or release the pedal to disengage the master and slave and call 
the technical help in the hospital (see last column of Table 1). 

VI. CONCLUSION AND FUTURE WORK  

With the goal of providing high-fidelity surgical training in 

simulation, we created a hardware-in-the-loop simulator 

platform.  A full robot dynamic model at joint level enabled 

us to do the dynamic simulation to mimic the real robot 

behavior independently. We developed a safety hazard 

injection engine integrated with the Raven-II robot system 

and simulator software to reproduce safety hazards happened 

in real surgery. A haptic force feedback mechanism was 

designed to provide surgeon an extra modality of information 

about the robot status when unexpected motion happens. 

Delivering the safety alarm to the surgeon by haptics is an 

efficient way of capturing such occurrences but will need 

additional human factor studies. 

We have demonstrated a general framework for 

robot-assisted surgical simulators for a more robust and 

resilient robotic surgery. Future work to further enhance the 

capabilities of our simulator would include: (1) better 

modeling of robot full dynamics including the uncertainties 

of cable mechanisms; (2) implementing a richer library of 

safety hazard scenarios to reproduce them in simulation; and 

(3) human factor studies with control groups to understand 

the efficacy of the haptic based safety training in order to 

verify the practical value of the proposed simulator.  
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Fig. 5. Haptic force feedback on the Omni device during fault injection 


