
CognitiveEMS: A Cognitive Assistant System for
Emergency Medical Services

Sarah Preum∗, Sile Shu†, Mustafa Hotaki †, Ronal Williams†, John Stankovic∗, Homa Alemzadeh†
∗Computer Science, University of Virginia

†Electrical and Computer Engineering, University of Virginia
{preum, ss5de, mkh3cf, rdw, jas9f, ha4d}@virginia.edu

Abstract—This paper presents our preliminary results on
development of a Cognitive assistant system for Emergency
Medical Services (CognitiveEMS) that aims to improve situational
awareness and safety of first responders. CognitiveEMS integrates
a suite of smart wearable sensors, devices, and analytics for
real-time collection and analysis of in-situ data from incident
scene and delivering dynamic data-driven insights to responders
on the most effective response actions to take. We present the
overall architecture of CognitiveEMS pipeline for processing
information collected from the responder, which includes stages
for converting speech to text, extracting medical and EMS
protocol specific concepts, and modeling and execution of an EMS
protocol. The performance of the pipeline is evaluated in both
noise-free and noisy incident environments. The experiments are
conducted using two types of publicly-available real EMS data:
short radio calls and post-incident patient care reports. Three
different noise profiles are considered for simulating the noisy
environments: cafeteria, people talking, and emergency sirens.
Noise was artificially added at 3 intensity levels of low, medium,
and high to pre-recorded audio data. The results show that the
i) state-of-the-art speech recognition tools such as Google Speech
API are quite robust to low and medium noise intensities; ii)
in the presence of high noise levels, the overall recall rate in
medical concept annotation is reduced; and iii) the effect of noise
often propagates to the final decision making stage and results
in generating misleading feedback to responders.

Index Terms—Cognitive assistant system, Medical emergency,
Speech recognition, Natural language processing, EMS.

I. INTRODUCTION

In an accident scene, emergency medical responders and
firefighters initially assess and control the situation and assist
victims by providing basic medical care before transferring
them to hospital. In such situations, even a few minutes
of delay in response time, or tiny errors in the information
gathered from the accident scene can largely affect the rescue
outcomes. So, first responders need to process substantial
amount of information with different levels of importance
and confidence and quickly prioritize available information for
situation assessment and response. They also need to consider
circumstances and history of the incident, communicate with
the command center, other responders and the victims and
then take actions based on this information and the knowl-
edge of established emergency response protocols. Collecting,
gathering, filtering, interpreting and processing such data at
the incident scene or control center requires lots of human
cognitive efforts.

In this paper, we present CognitiveEMS, a cognitive as-
sistant for emergency medical services (EMS), that will im-
prove first responders’ situational awareness and safety in
the incident scene. CognitiveEMS leverages responder-worn
devices and smart sensors to monitor their activities and
communications at the incident scene as shown in Figure 1.
This data is then aggregated with static data sources, such
as, emergency response protocol guidelines to generate real-
time insights that can assist the first responders with making
effective decisions and taking safe response actions.

Fig. 1: The system architecture of CognitiveEMS

The overall architecture of the system is described in [1]
and also shown in Figure 1. In this paper, we present the
preliminary implementation and performance evaluation of
different modules of the pipeline using real data and in
presence of noise, namely, (i) speech to text conversion, (ii)
context specific concept extraction, and (iii) modeling and
executing protocol guidelines. The main contributions of this
paper are as follows.

• Evaluating the performance of the Google Cloud Speech
API, the state-of-art tool for speech recognition using
EMS radio call data under three different noise pro-
files common in emergency situations (i.e., noise from
conversation of people, cafeteria, and emergency sirens)
with three different intensities (i.e., low, medium, and
high). The results indicate that among the three different
noise types considered, the conversation noise with high
intensity degrades the performance of speech recognition



to the highest extent. However, the effects of noise with
low and medium intensities are similar for all three types
of noise considered.

• Adapting two state-of-the-art medical concept annotation
tools, namely, MetaMap [2] and CLAMP [3] to the EMS
domain and comparing their performance in extracting
EMS related concepts from real EMS incident reports
and radio calls.

• Evaluating the performance of the above medical concept
annotation tools in processing noisy radio call data.
Specifically, how the accuracy of concept annotation
stage is affected by the noisy data fed from the speech
recognition stage. The evaluation results indicate that
these tools achieve high precision in identifying relevant
concepts due to very low false positive rate. However,
their recall varies from 0.25 to 1 based on the target con-
cept list and the type and intensity of noise considered.

• Developing the first version of a rule engine that utilizes a
Prolog based logic programming language to model one
of the most commonly used EMS protocol guidelines,
called the Primary Survey Protocol [4], and to automat-
ically generate insights on the actions to be taken by the
first responder.

II. RELATED WORK

A. Cognitive assistant systems

Cognitive assistant systems have been applied to health
applications [5]. Specifically, in [5] a Google glass based
assistive system is developed to perform context-aware real-
time scene interpretation by identifying objects, faces, and
activities for people suffering from cognitive decline. In the
context of emergency situations, the form factor and interface
of cognitive assistant systems and their availability and ability
to respond in real-time are of particular importance. So, we
consider wearable microphones instead of Google glass.

In the context of emergency medical services, existing sys-
tems try to reduce the responders’ cognitive load by providing
new interfaces for electronic incident scene reporting [6], [7].
ImageTrend [6] provides virtual data entry interfaces for EMS
responders. But a significant part of scene reporting is still
composed of narratives written in free-form text, describing
the observations and actions performed by the first responders
at the incident scene. In [7], authors develop a mobile entry
solution to aid data collection by dynamic customization of
data fields. But these systems still rely on touch screens and
messaging interfaces that are hard to manipulate in the midst
of an incident. Hence CognitiveEMS aims at automatically
extracting data from the responders’ speech to reduce the
cognitive burden of the first responders.

B. EMS and medical decision support

Meneguzzi et al. present ANTICO [8], an emergency agent
architecture for emergency response managers that integrates
plan recognition, current and future user information needs,
and workload estimation and offers dynamic data visualization
on weather and traffic. They use an XML based language

to specify the domain description in terms of potential user
activities. They model potential workflow of a user (i.e., an
emergency response manager) using Hidden Markov Model
where each state represents a potential activity of the user.
They evaluate the system using a simulation of a chemical
attack. Although both ANTICO and CognitiveEMS are emer-
gency response assistant, they target different user groups
involved in emergency response management and thus tackles
different sets of challenges. ANTICO focuses on providing
information aggregation and visualization support through a
graphical user interface to the emergency response manager
who communicates with the first responders at the scene. On
the other hand, CognitiveEMS aims at providing real time
decision support through wearable interfaces directly to the
first responders present in an emergency scene.

In [9], a Pressure Injury Clinical Decision Support System
(PI-CDSS) with an expert knowledge base is developed to
help nurses decide on the best wound products in wound
healing. PI-CDSS framework applies decision-making theory,
knowledge representation and process modeling to develop an
expert system for wound assessment and treatment.

Shang et al. develop a framework of clinical decision
support system (CDSS) for chronic diseases based on ontology
and service-oriented architecture (SOA) [10]. Ontologies are
used for knowledge base construction on multiple clinical
practice guidelines. Further, a CDSS web service is developed
to provide clinical decision support via ontology reasoning
based on a knowledge base constructed from clinical practice
guidelines of Type 2 diabetes mellitus and hypertension.

There are also a number of mobile applications developed
for smart devices to help with the decision making process
of first responders. They provide information in an organized
manner and provide search options to find critical information
based on keywords. Informed’s Emergency & Critical Care
Guide is one such commercial application that is devel-
oped for iOS devices [11]. It allows the user to search for
medication information; calculate dosage or other necessary
measurements for intervention; tabulate scores for pediatric
trauma, Glasgow Coma, Apgar, and the NIH stroke scale;
and access information about pediatric normal vital signs and
protocols, including, resuscitation and airway management.
Another mobile EMS application is TJEMS [12]. It contains
regional EMS protocol guidelines and suggested interventions
for first responders.

C. Noise profiling using speech APIs

There are existing works to evaluate performance of speech
recognition systems in noisy environments. For example, in
[13] the authors create an approach and a database to eval-
uate the performance of speech recognition systems in noisy
environments. They consider eight different real-world noise
profiles, namely, noise from suburban train, crowd of people,
car, exhibition hall, restaurant, street, airport, and train station.
However, the speech data used in this study consists of male
and female American English speakers reading isolated digits



and sequences of up to seven digits rather than natural text
containing partial or complete sentences.

There are also existing works on comparison of different
off-the-shelf speech recognition APIs. Authors in [14] com-
pare commercial speech recognition systems, Google Cloud
Speech API and the Microsoft Speech API, with open-source
systems such as CMU Sphinx4 [15]. Audio containing pho-
netically rich sentences from various sources are collected and
tested with these speech recognition tools. Measurements of
the word error rate show that the Google Cloud Speech API
is superior. Another research [16] analyzes several automatic
speech recognizers (ASRs) in terms of their suitability for use
in different dialogue systems. They consider PocketSphinx
[17], Apple Dictation, Google Cloud Speech API, AT&T
Watson, and Otosense-Kaldi. Datasets from 6 domains of
dialogue systems differing in genre, type of users, and number
of users are tested. They find that speech recognizers per-
form differently in different domains. Overall, Cloud-based
recognizers (i.e., Google and AT&T) outperform the other
recognizers for four out of the six datasets. For the other two
datasets, local customizable recognizers (i.e., PocketSphinx
and Otosense-Kaldi) perform most accurately when used with
custom language models.

III. SOLUTION OVERVIEW

The overall architecture of CognitiveEMS is presented in
[1] and also shown in Figure 1. In this paper we present the
analytics pipeline of the system as depicted in Figure 2.

Fig. 2: Basic analytics pipeline of CognitiveEMS

A. Analytics Pipeline

As shown in Figure 2, the basic analytics pipeline of our
proposed system, CognitiveEMS, consists of (i) speech to
text conversion, (ii) pre-processing text data originated from
different sources (e.g., output from speech recognition stage,
incident report, electronic health record data, etc.), (iii) named
entity recognition to identify people, place, organization, and
temporal expressions, (iv) heterogeneous concept extraction in
the context of EMS including, EMS protocol specific concepts
and additional critical concepts, (v) protocol modeling and
execution, and (vi) inferring the outcome and assessing the
scene to track the status of the scene after the interventions are
performed by the first responders. Overall, goal of the pipeline
is to extract useful information from real time data collected

from different sources (both on-scene and outside) and provide
feedback to the first responders in order to increase their situa-
tional awareness, decision making capacity and safety. Results
on comparing different off-the-shelf speech recognition tools
and named entity recognition (NER) tools are presented in
[1]. There four off-the-shelf state-of-art speech recognition
tools namely, Google Cloud Speech API, Microsoft speech
API, PocketSphinx, and IBM BlueMix API, are compared
in both noisy and noise-free environment. The performance
of these tools is measured in terms of word error rate and
computation time using transcripts that are not specific to EMS
scenes. The evaluation demonstrates that the Google Speech
API outperforms the other APIs in terms of both performance
metrics for both noisy and noise-free data. We also compare
three state-of-art NER tools in extracting named entities (i.e.,
people, place, organization) and temporal expressions from
EMS specific textual data in [1]. The tools are Stanford
coreNLP, Apache openNLP, and Illinois tagger. The results
indicate that the Stanford coreNLP NER tool outperforms the
other tools in terms of both precision and recall for all of the
four types of entities considered.

In this paper, we further evaluate the Google Speech API
using real EMS radio call data and in presence of varying
levels of noise and noise types. We also adapt two medical
concept extraction tools to EMS domain and compare their
performance on EMS concept extraction on both noisy and
noise-free EMS data. Finally, a rule engine is developed to
model the primary survey protocol [4]. The protocol modeling
is performed using both noisy and noise-free data. Thus
we extend the work in [1] in this paper by (i) performing
noise profiling under three different noise types and three
noise levels, (ii) implementing additional two modules of
CognitiveEMS, and (iii) evaluating their performances under
nine different noise profiles.

B. Speech-to-text conversion

Speech data is collected using the wearable devices worn
by the first responders. This data can include incident scene
description, patient’s status description, radio calls, conversa-
tion between responders and others present on the scene, etc.
This data is converted to text to extract critical information. As
mentioned above, previous research shows that out of available
commercial and open-source speech recognition technologies,
the Google Cloud Speech API provides the best results [1],
[14]. Hence, in this paper, the audio data is converted to speech
data using the Google Cloud Speech API.

C. Concept extraction

After speech to text conversion, medical and EMS relevant
concepts are extracted from the converted text as well as
other text data, e.g., patient’s electronic health record (EHR),
EMS report, etc. Concepts are collected based on an existing
ontology of EMS concepts and the knowledge base of EMS
protocols. In this paper, concepts are extracted based on a
preliminary ontology and two EMS protocols, primary and
secondary surveys [4] using two state-of-the-art medical NLP



tools, namely, MetaMap [2] and CLAMP [3]. This section
presents a brief description of these tools.

1) MetaMap: MetaMap is a highly configurable tool for
mapping biomedical text to the concepts in the unified medical
language system (UMLS) Metathesaurus [2]. MetaMap uses
a knowledge-intensive approach based on natural-language
processing and computational-linguistic techniques. The input
text to MetaMap undergoes lexical, syntactic, and semantic
analysis consecutively. The lexical analysis consists of tok-
enization, sentence identification, and acronym or abbreviation
identification. The syntactic analysis includes part-of-speech
tagging, lexicon matching from input to SPECIALIST lexicon,
and shallow parsing to identify phrases and their lexical
heads. Finally, MetaMap performs semantic analysis, includ-
ing, but not limited to, variant generation of identified phrases
and words, candidate identification, mapping and word sense
disambiguation. MetaMap classifies concepts into semantic
types that can be further utilized to extract information of
specific types, e.g., medication or disease name. There are 133
semantic types categorized in 14 semantic groups. An alternate
way to filter concepts is using concept unique identifiers (CUI)
of known or target concepts. In this paper, we used CUIs to
filter concepts.

2) CLAMP: Clinical Language Annotation, Modeling, and
Processing (CLAMP) is another customizable natural lan-
guage processing pipeline for processing clinical text data
[3]. It is trained on electronic health record (EHR) data and
provides an interface to extract three semantic classes of
clinical terms from text, namely, problem, test, and treatment.
The problem class includes patient history, injury, symptoms,
and diagnoses. The test class encapsulates concepts indicating
diagnostic medical procedure (e.g., 12 lead EKG) and vitals
(e.g., blood pressure). The treatment class covers concepts
related to treatment, such as, medication name, medical pro-
cedures. CLAMP also identifies some temporal concepts, such
as, duration and interval. CLAMP formulates the problem of
concept extraction as a classification problem, e.g., classifying
phrases or words in a text into one of the three classes men-
tioned above. It offers a variety of classification approaches
for concept extraction: (i) machine learning based classifier
including support vector machines and conditional random
fields, (ii) rule based classifier and (iii) a combination of both
(i) and (ii).

D. Protocol Modeling and Execution

1) EMS Protocols: Primary and secondary surveys are
two of the most commonly used protocols for initial patient
assessment in emergency situations. The primary survey is an
initial, rapid assessment of the patient to identify and treat
those conditions that present an immediate threat to life [4].
Once the primary survey has been finished, first responders can
proceed to secondary survey. Generally, the overall purpose
of secondary survey is to examine the problems that do not
threaten the patients life immediately but might become severe,
even life-threatening, if they are not treated properly. The
secondary survey contains two phases: information-gathering
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Fig. 3: EMS Protocol 1: Primary Survey [4]

phase and examination phase. In the information-gathering
phase, rescuers try to determine the nature of a patients
issue by asking questions and observing the environments
where the patient is found. In the examination phase, physical
assessments are performed to determine the patients vital
signs and detect injuries or signs of illness. The decision
process flowcharts based on the primary and secondary survey
protocols are shown in Figure 3 and Figure 4, respectively.

2) Rule Engine: The rule engine is a software system
that executes one or more rules in real-time. A rule system
enables the policies and operational decisions to be defined,
tested and executed. Such rule engines can be implemented by
logic programming languages (e.g., Prolog), which are sets of
sentences in logical form to express facts and rules about the
target problem domain. In this work, we translate the EMS
protocol guidelines into rules in logic programming language
and then generate a custom rule engine to realize a real-time
executable model for cognitive interface and decision making.
In this paper, we applied pydatalog [18], a logic programming
language library performing Datalog, implemented in Python,
to develop the first version of a rule engine that only models
the primary survey of the EMS protocol guidelines. The
concepts required for the primary survey can be extracted
and their negation conditions can be detected by concept
annotation tools such as MetaMap. These extracted concepts
can then be directly used as the inputs to the executable model
of primary survey. The default input considers that there is no
hazardous situation and the patient does not have any of the
symptoms that are observed according to the primary survey
protocol. For every concept extracted by MetaMap, we first
identify whether it is required as an input to the primary
survey. Then we apply the detected negation condition of the
concept as an input to the rule engine. Finally, a treatment
suggestion is generated based on the relevant concepts fed to
the rule engine.
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IV. EVALUATION

In this section we evaluate multiple stages of our pipeline,
namely, speech to text conversion under noisy environment,
context-aware concept extraction, and modeling and execution
of the EMS protocols.

A. Speech to text conversion under noise

In this experiment, we assess the performance of the Google
Cloud Speech API under different noise profiles that are likely
to appear in an emergency situation.

Dataset: The experiment is conducted using 4 short radio
calls. A radio call contains audio data where a paramedic
reports on the condition of a patient in an emergency incident.
The radio calls considered in this experiment cover the follow-
ing EMS situations: shortness of breath, multiple injuries with
bleeding, myocardial infarction, and motor vehicle accident.
The audio files are short, containing about 162 words and
spanning about 1.5 minutes on average.

Noise profile: For this experiment, three types of real-
world noise profiles are chosen: cafeteria, people talking, and
emergency sirens. For each noise profile, three noise levels are
artificially added: low, medium, and high noise.

Noise is added to the clean audio files in LabVIEW [19].
Wave files for both the clean recording and noise tracks are
imported and added sample by sample. In this approach, the
sampling rate has to be the same for both tracks. To create
a noisy recording in a controlled manner, the noise track is
given a pre-gain to make its magnitude roughly equal to the
magnitude of the clean recording. Then, the tracks are given a
weight and are added to create the output. To keep the clean
recording’s magnitude constant, the weight for it is chosen to
always be 1. The weights for the noise tracks are 0.1, 0.4, and
1 for low, medium, and high noise levels, respectively. These
values are not linearly-spaced but do cover a relatively wide
range of signal-to-noise ratios. This method allows adding
noise in a controlled manner, as it keeps the noise and clean

audio waveforms constant and only varies the noise type and
the noise level.

Performance metric: The performance is measured using
two metrics: word error rate (WER) and accuracy.

• WER is a commonly used metric for determining the
performance of a speech recognition system. It works on
the word level rather than the phoneme level, counting
the percentage of errors in the words in the recognized
text against the reference text. WER is calculated using
the following formula:

WER =
(I +D + S)

N

Here, I , D, S, and N indicate the number of inserted
words, the number of deleted words, the number of
substituted words, and the total number of words in the
reference, respectively.

• Accuracy is calculated as:

Accuracy =
(N −D − S)

N

Accuracy is a less preferred metric than the WER in most
situations, since it does not take into account the number
of incorrectly inserted words.

1) Effect of Noise on WER: Figure 6 depicts how WER
varies across different noise profiles and noise levels. As
expected, WER increases as more noise is added to the data. It
can be seen that people talking has the most adverse effect on
the recognition results. On average, the increase in WER from
medium to high noise is larger than the increase in WER from
low to medium noise. This can be partially explained by the
fact that the noise levels are not increased linearly. However,
the fact that WER increases more sharply for people talking
at high noise than the other noise profiles suggests that noise
that contains speech affects WER more adversely at louder
levels.

2) Effect of Noise on Accuracy: The effect of noise on
accuracy is consistent with its effect on WER as shown in
Figure 5. Here the average WER and accuracy is shown across
all radio calls for different noise profiles. In this case, when
high levels of noise are added, the accuracy sharply declines.
As expected, the effects are again most adverse for the case
of people talking and least adverse for emergency sirens.

3) Effect of adding phrase hint: Speech recognition with
the Google Cloud Speech API can be tailored to a specific
application by providing it with a list of word hints. In the
earlier settings, the API used its default model to convert
speech to text. In this experiment, the API is provided with a
list of common medical terms. This made a slight improvement
of about one percent in both accuracy and WER for one of
the datasets. It is likely that with a more comprehensive list of
EMS relevant concepts, the performance improvement is even
higher.

B. EMS concept extraction

One of the fundamental stages of the pipeline is extracting
medical and EMS relevant concepts from the text data. The



(a) Average accuracy under different noise profiles (b) Average WER under different noise profiles

Fig. 5: Effect of noise on speech to text conversion: the X axis represents the variation of the noise levels and the noise types
and the Y axis represents accuracy (Figure a) and WER (Figure b). On average, when noise level is increased the accuracy
decreases and the word error rate (WER) increases. The change in performance is more drastic for the people talking noise
followed by the cafeteria noise.

(a) Cafeteria noise profile (b) People talking noise profile (c) Siren noise profile

Fig. 6: For all noise profiles, WER increases with the increase of noise level. The decline in performance is most significant
for the people talking noise. The amount of change in WER varies across different radio call data files.

text data can originate from heterogeneous sources, such as
patient care reports, patient’s history, electronic health records,
radio calls, etc. Also, the text data can either appear in raw
text format or as output from the speech recognition stage.

In this experiment, we compare two state-of-the-art medical
concept extraction tools in extracting context specific terms
from EMS related text. The two contexts that are considered
are: EMS protocol specific concepts and an ontology of
medical concepts that do not appear on the prior list. We
also consider the effect of noise on the accuracy of concept
extraction. In addition, we consider how the performances of
these tools vary across different data sources. The datasets and
settings used in this experiment are described below.

Data: We use two different datasets in this experiment,
including: (i) text converted by the Google Speech API from
the EMS radio call recorded by the first responder, and (ii)
post-incident patient care reports written by the responder(s).
We use the post-incident reports as a surrogate of the overall
incident description and workflow of the first responders, as
any other data containing these information aren’t available for
the real scenarios considered in this paper. These two types of
data vary in terms of source, format, and content as described
below.

• The radio calls are made by the first responders during
service time while transferring the patient to hospital
to give a concise summary of the incident. On the
other hand, the patient care reports are recorded by the
responders post incident and after returning from service.

• The radio call data is comparatively much shorter than
the patient care report data. The radio call data contains
the summary of the work flow of the responder(s) in
a chronological order. It usually contains the symptoms
of the patients, relevant vitals for potential diagnosis,
and sudden change of status of the patient. The patient
care report includes more comprehensive details on the
incident, including chief complaint, other complaints,
patient’s demographic information, history (i.e., past dis-
ease, diagnosis, medication, allergy), all recorded vitals,
procedures performed on scene and their outcomes, pro-
gression of vitals or status over time, etc. Also, it contains
context specific abbreviations, e.g., level of consciousness
and awareness of people, place, time may expressed as
”CAO times 3” or ”CAO X 3”.

• The radio call data is usually collected in free-form
audio format and need to be converted to text for further
processing. Based on the API used to converting the
audio, the generated text may not include any punc-
tuation or sentence identifiers. As this is derived from
speech data, the text is often grammatically inaccurate
and consists of partial sentences or only phrases. On the
other hand, the patient care reports are usually written
in semi-structured format or punctuated grammatically
accurate text, often consisting of complete sentences.
Hence, unlike the patient care reports, the radio call
data cannot be easily analyzed by dependency parsing
or extracting relationships between different concepts.



Fig. 7: Comparing the performances of MetaMap and CLAMP under noise in terms of average recall and number of true
positives for the extended protocol specific concept list. Overall, MetaMap performs better than CLAMP in case of both noisy
and noise-free data. The effects of low and medium levels of noise are similar for all three types of noise. The effects of high
level of noise is significant, specially, in case of the noise of people talking.

Fig. 8: Comparing the performances of MetaMap and CLAMP in terms of average recall for the exact protocol specific concept
list. CLAMP outperforms MetaMap for most of the noise profiles. For both tools the recall drops when the outputs of speech
recognition stage are fed to the tools. For noisy input data, the performances of each of the tools are adversely affected only
for the high level of the noise of people talking.

Fig. 9: Comparing the performances of MetaMap and CLAMP in terms of average recall for the additional critical EMS
concept list. MetaMap outperforms CLAMP for both noisy and noise-free data.

In this experiment, four real radio calls and five patient
care reports from publicly-available sources are used. The
radio call data are the same as the ones described in Section
IV-A. We use noise free and noisy versions of the radio calls
to measure the performances of CLAMP and MetaMap in
extracting the relevant concepts from text. Then we compare
the performances of CLAMP and MetaMap in extracting
concepts from raw, unaltered text.

Ground truth annotation: The text data are manually
annotated by two annotators to identify the following three
types of concepts:

• Protocol specific exact concepts: Each text data file
is annotated to identify whether it contains the exact
concepts from the two EMS protocols: primary survey

and secondary survey (described in Section III-D1). In
total, we identified 19 concepts for these protocols: con-
scious, breath, pulse, bleed, skin color, skin temperature,
skin moisture, blood pressure, temperature, heart disease,
circulation problem, stroke, COPD, asthma, diabetes, last
visit, medication, wound, position.

• Protocol specific extended concepts: Each text data is
annotated to detect whether it contains any of the con-
cepts from an extended list of protocol specific concepts.
The original list of concepts is extended in two ways:
(i) by adding the ”preferred name” of the most relevant
concept unique identifiers (CUIs) for each concept in
the original list (extracted manually from the UMLS
Metathesaurus API [20]), and (ii) by manually identifying



phrases or words in the dataset of EMS radio calls and
patient care reports that are semantically similar to the
original protocol specific concepts. For example, using
CUIs, we are able to add terms such as blood, bleeding
for the original protocol specific concept bleed. We also
add medical specific abbreviations, e.g., BP for blood
pressure and oriented times 3 for consciousness. Number
of concepts in the extended lists for the radio call and
patient care report data are 248 and 233, respectively.

• Additional critical EMS concepts: Finally, each text
data file is also annotated for the additional EMS concepts
that are not covered in the above two lists but may
be critical for decision making or for executing other
EMS protocols. This set includes the concepts indicating
(i) physiological vital signs, (ii) chief complaints, (iii)
clinical or emergency procedures, (iv) accident type, (v)
pains, (vi) medications, and (vii) symptoms. Empirically,
this list is found to be specific to our dataset. Although
this list is curated manually in this work, in future we plan
to further expand and populate it using word embedding
models that are trained on larger domain-specific corpora.
Number of additional concepts added in the extended lists
for the radio call and patient care report data are 27 and
49, respectively.

Performance Metrics:
1) Comparing performance of MetaMap and CLAMP in

noisy data: In this experiment, the text data from the four radio
calls are used to measure the performances of MetaMap and
CLAMP in medical and EMS concept extraction under noise.
Specifically, for each of the 4 radio calls, the input consists
of (i) the original transcript of the radio call, (ii) the output
from the Google cloud API without any noise (clean data), and
(iii) the nine noisy text outputs from Google cloud API (i.e.,
three noise profiles with three different noise levels). Thus, in
this experiment we evaluate the performance of MetaMap and
CLAMP in concept extraction on 44 (4 times 11) different text
scripts.

The results of this experiment are presented in Figures 8, 7,
and 9 for exact, extended protocol specific concepts, and for
additional critical concepts, respectively. The number of false
positives for both MetaMap and CLAMP are found to be low
or zero in these cases, even when the data is very noisy. This
is because both MetaMap and CLAMP are trained on domain
specific concepts and they classify terms as medical concept
with high confidence. Hence, precision is measured to be 1
for almost all cases. So, we consider the recall and number of
true positives.

For exact protocol specific concept list (referring to Figure
8), CLAMP is found to perform better than MetaMap in
terms of both true positive rate and recall. There is difference
in performance from the original transcript to the noise-free
output from the Google API. The effect of noise is minimal.
Specifically, there is no difference in the effect of low and
medium noise. The recall drops only for high level of people
talking noise.

concept
Type

Tool
Name

Avg. number
of true positives

Avg. number
of false negatives

Avg.
Recall

Exact CLAMP 13.8 12.6 0.524
MetaMap 0.8 0.2 0.043

Extended CLAMP 16.2 13.6 0.547
MetaMap 12.6 7 0.696

Additional CLAMP 25.2 4.6 0.88
MetaMap 13.2 10.8 0.527

TABLE I: Comparing the performances of CLAMP and
MetaMap on patient care report data: CLAMP on average
extracts a larger number of true positives in for all three
concept lists. The precision is 1 in all the cases as the
tools result in no false positives. So, we consider three other
measures. The performances of these tools vary based on
the concept list, e.g., while MetaMap performs better for the
extended concept list, CLAMP outperforms MetaMap for the
other two concept lists.

For extended protocol specific concept list (referring to
Figure 7), MetaMap outperforms CLAMP in all cases by at
least 7% in terms of recall. Like the previous case, there is
no difference in performance from the original transcript to
the noise-free output from Google API. In this case, the effect
of noise is more prominent than the previous case. This is
because, the exact concept list consists of only 19 concepts
whereas the extended concept list consists of 248 concepts. For
example, for the people talking noise profile, the performance
under the low level of noise is about 30% better than the
performance under the high level of noise. For cafeteria noise,
the performance under the low level of noise is about 8%
better than the performance under the high level of noise. The
level of siren noise does not affect the performance of concept
extraction.

Finally, as shown in Figure 9, for additional critical EMS
concept list MetaMap outperforms CLAMP in most of the
cases. Interestingly, in this case the recall is higher for the
noisy output than the original scripts for CLAMP under low
and medium noise. This is because, as the Google API output
is not punctuated, so it does not have any sentence structure.
We found that although some concepts are not identified in
the original punctuated file by CLAMP, they are found in the
punctuation-free text generated by the Google API. Similar to
the two above-mentioned cases, the effect of people talking
noise is higher than the effects of cafeteria and sirens noise.

Overall, the performances of the concept extraction tools
are similar for the original transcripts and the noise-free output
form the Google API for different concept lists. Among dif-
ferent types of noise considered in this experiment, the people
talking noise affects the performance of concept extraction the
most. The effects of siren noise is negligible. Among different
levels of noise, the high levels of noise affect concept extrac-
tion the most. The effects of low and medium levels of noises
are similar for different noise profiles. The performances of
MetaMap and CLAMP vary based on the concept list and
textual data type. This demands further exploration by adding
domain adaptive, robust concept extraction models that are



trained on larger heterogeneous EMS datasets to improve the
overall concept extraction accuracy.

2) Comparing performance of MetaMap and CLAMP in
raw text data: In this experiment, we compare the perfor-
mance of MetaMap and CLAMP using 5 public patient care
reports. The results are presented in Table I. In this experiment,
both MetaMap and CLAMP result in zero false positives and
thus the precision is 1 in all cases. So, we compare them in
terms of recall and the number of true positives and false neg-
atives. CLAMP outperforms MetaMap in terms of recall for
extracting concepts from both exact protocol specific concept
list and additional critical concept list. In case of extended
protocol specific concept list, MetaMap performs better. This
is because: (i) for exact protocol specific concept list and
additional critical concept list, MetaMap is sometimes not
triggered by the key phrases present in the text. This is evident
by the lower number of true positives for MetaMap in case of
considering these two concept lists; (ii) On the other hand, the
extended protocol specific concept list contains much larger
number of concepts than the other two lists. These concepts are
identified by MetaMap more frequently as MetaMap identifies
133 semantic types of concepts, while CLAMP identifies only
three types of concepts. This is demonstrated by the lower
number of false negatives for MetaMap in case of considering
the extended protocol specific concept list.

Fig. 10: Recall rate of the primary survey protocol rule engine
applied on both noise-free and noisy outputs of the radio call
data from the speech recognition stage. On average, higher
levels of noise cause more decline in the recall rate and
accuracy of detecting correct status and thus can lead to
erroneous action suggestions.

C. EMS Protocol Modeling

In this experiment, we apply the Primary survey protocol
rule engine (described in Section III-D2) on the noisy output
from the concept annotation stage to generate a final action
suggestion for the first responders based on the concepts
extracted from the radio call data. As a patient’s condition
changes over time, in this experiment the suggestions are
generated based on the final stable condition of the patient as
reported in the radio call. The results are presented in Figure
10 in terms of the recall of the correct actions suggested

by the rule engine based on the primary survey protocol
versus the level of noise present in the data. It is evident
that higher levels of noise affect the correctness of the rule
engine more adversely. Similar to the concept extraction phase,
the recall of this stage is the same for both low and medium
noise levels but drops sharply for high level of noise. This
is because with the noisy data, the accuracy of MetaMap
for concept extraction declines. Specifically, three cases of
error are identified empirically. Firstly, concepts required by
protocols are failed to be extracted, e.g., the concept bleed is
not detected in some noisy files, thus the action suggested
by the rule engine is to perform secondary survey instead
of control bleeding (referring to Figure 3). Secondly, extra
concepts are mistakenly identified by MetaMap. Finally, nega-
tion is not detected correctly by MetaMap. These errors get
propagated from the concept annotation (NLP) stage to the
protocol execution stage, resulting in incorrect identification
of patient’s condition and generating incorrect or misleading
suggestions to the responders. The recall rate of correct outputs
are, respectively, 0.75, 0.67, 0.67, and 0.42, for noise free,
low-noise, medium-noise, and high-noise data, respectively.

V. DISCUSSION AND FUTURE WORK

This section describes some of the major challenges identi-
fied through the experiments conducted in this paper and the
potential future work to address those challenges.

Despite being the state-of-the art speech recognition tech-
nology, the Google API has a number of limitations as
follows. (i) The textual output of the API does not contain
any punctuation marks. While humans can infer sense from
conversations using pauses and verbal ques and distinguish
sentences and flow of meaning from each other without
explicitly using punctuation marks, the Google API fails to
identify the implicit punctuations. Although, this does not
impact calculating WER and accuracy, it makes it harder to
perform natural language processing on the returned transcript.
Because, the traditional NLP tools require proper punctuation
marks to capture sentence structures [21]. (ii) The Google
Speech API is also inconsistent in interpreting numbers. For
example, it interpreted what was clearly dictated as 52, five-
two, year-old male as 5052 year-old male. Errors like this
affect both the accuracy and WER. These erroneous speech
recognition results can make it hard to derive meaningful data
out of the returned transcripts, might lead to error in decision
making, and result in safety violations. In future, we would like
to explore techniques to resolve these issues and enhance the
resilience of different stages of the pipeline to errors. Also, this
paper used the asynchronous setting of the Google Speech API
for conducting the experiments. As a more realistic approach
we plan to use the real-time streaming feature of the API and
evaluate its performance in terms of execution time.

The concept lists used in this work are extended using
MetaMap and manual observation. To make the process more
comprehensive, we plan to develop word embedding models
trained on EMS and clinical corpora to expand our EMS
ontology and extract more relevant contextual concepts from



text. Also, the results indicate that the performance of existing
medical NLP tools vary based on different types of data
and contents of the calls and reports. We will extend the
functionality of these tools by integrating them with domain
specific information extraction algorithms. In addition, we will
extend this analysis using larger and more diverse datasets for
all stages of the pipeline.

VI. CONCLUSION

In an emergency medical situation the first responders need
to collect, aggregate, filter, and interpret information from
different static and real time sources within a short interval.
This demands significant amount of human cognitive effort
that is better spent on critical decision making and effective
response. In this paper, we present CognitiveEMS that aims at
improving first responders’ situational awareness and safety
in the incident scene and reduce their cognitive overload. We
present preliminary implementation and performance evalua-
tion of three modules in the processing pipeline of Cogni-
tiveEMS using multiple real datasets: (i) speech recognition
under nine different noise profiles, (ii) medical and EMS
concept extraction, and (iii) EMS protocol guidelines modeling
and execution. The experimental results indicate the robustness
of the state-of-the-art speech recognition tool, Google Speech
API, under low and medium noise levels. We find that in the
presence of high levels of noise the overall recall in medical
concept annotation is reduced. Finally, the effect of noise often
propagates to the final decision making stage and results in
generating misleading feedback to the responders.
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