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Abstract—Safety-critical medical monitoring systems have
always suffered from false alarms and misdetection issues,
sensitivity to external perturbations and internal faults, which
could be catastrophic for patients. We address the main
challenges faced towards the resiliency of medical monitoring
devices by introducing a novel reconfigurable hardware archi-
tecture that enables: (i) accurate detection of medical conditions
by means of a fusion and decision support mechanism based on
concurrent analysis of multiple physiological signals and com-
puting a unified health index, (ii) dynamic system adaptation to
patient-specific diagnostic needs, and (iii) availability of system
despite the occurrence of accidental errors and unexpected
failures. This paper presents an overview on the monitoring
algorithms implemented in the architecture for analysis of
multi-parameter patient data from a cardiac Intensive Care
Unit (ICU). An evaluation framework is proposed for assessing
the resiliency of the detection and fusion mechanisms to data
artifacts and their effectiveness in masking false alarms.

I. INTRODUCTION

Safety-critical medical monitoring systems aim to mea-
sure and analyze individual physiological and behavioral
data in real time and provide physicians and patients with
accurate diagnoses and health alerts. Recent advances in
sensing and computing technologies have enabled the emer-
gence of intelligent health monitoring systems. Personalized
monitoring devices can be used for early identification
of medical conditions and facilitating conventional clinical
diagnosis processes in the scenarios of non-ICU treatment,
post-ICU courses, and long-term in-home follow-ups [1].

Current health monitoring systems are often subjected
to a non-negligible rate of false alarms, misdetection, and
failures. Several studies have reported an extremely high
false alarm rate in critical care monitoring [2]. False alarms
are a nuisance for patients and caregivers, often interfere
with a physician’s ability to perform other critical tasks, and
contribute to desensitization of caregivers to real events [3].

In addition, a large number of serious injuries and death
caused by medical device failures have been sadly recorded
in the last decades. During years 2006-2011, 13,191 recalls
and around 1.5 million adverse events for different medical
devices were reported to the U.S. Food and Drug Admin-
istration (FDA). Almost 36% of these recalls were due to
computer-related failures, of which around 15% were related
to medical monitoring devices [4].
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In fact, available monitoring systems have always suffered
from sensitivity to external perturbations and/or internal
faults, which could be catastrophic for patients. Given the
criticality of application to the human life, medical monitor-
ing systems have to be resilient in both accurate and timely
delivery of results, despite the changes in the patient and
environment and even in the face of accidental errors.

In this paper, we take the preliminary steps towards
providing resiliency in medical monitoring devices by iden-
tifying three key challenges “AAA™:

(i) Accuracy - real-time analysis of physiological signals
with low false positive/false negative rates;

(i) Adaptability - dynamic adaptation to patient-specific
diagnostic needs and different application scenarios;

(i) Availability - dependable monitoring and resilience to
unexpected artifacts (e.g., improper sensor contact, failure of
attached sensors, patient movements), and accidental errors
(software bugs and hardware faults).

We argue that a promising approach is to engineer a
comprehensive, reliable, lightweight, and flexible medical
monitoring system capable of accurately analyzing a wide
variety of physiological signals. Therefore, in [5] we pro-
posed a novel reconfigurable hardware device that enables (i)
accurate diagnosis of medical conditions through concurrent
processing of multiple physiological signals, computing a
unified health index, and data fusion, (ii) dynamic system
adaptation to address various medical needs, and (iii) re-
siliency to accidental errors and failures.

In this paper we present a simulation framework for
evaluation of different signal analysis and fusion schemes
that can be implemented in the proposed architecture. Rep-
resentative monitoring techniques are evaluated by assessing
their resilience to the incidence of data errors and their
effectiveness in reducing false alarms.

II. THREATS TO RESILIENT MEDICAL MONITORING

Figure 1 depicts the distribution of causes of computer-
related recalls for medical devices along with their level
of criticality, as reported to FDA during years 2006-2011.
Around 94% of the recalls are classified in Class 1 and 2,
representing medium-to-high risk of serious health problems
or death to the patients. Software, hardware, battery/power
supply, and connection errors are the common causes of the



Table T
SOURCES OF FAILURES IN MEDICAL MONITORING DEVICES AND SELECTED ADVERSE EVENTS

Fault Origin [ Description [ Error Symptom

[ Adverse Event Example |

Data Error Input data streams contain noises,

artifacts, or even missing samples false alarms

Missed detection or

Philips bedside patient monitors were reported to have more false asystole
alarms caused by possible RF interference [6].

Algorithm Algorithm is less effective or inappli-
cable for a specific patient or medical

condition

false alarms

Missed detection or

GE ApexPro telemetry system reportedly did not announce ventricular
fibrillation events since the predefined criteria were not reachable to detect
ventricular ectopic beats [7].

Hardware Fault Errors caused by transient and per-

manent hardware faults or crash

System  malfunction

Horizon Cardiology Hemo monitoring system was recalled because of a
hardware configuration problem that caused delay and/or loss of patients’
physiological parameters [8].

Software Bug Errors due to software bugs

or crash

System malfunction

Philips NM3 patient monitor was recalled because it displayed two respira-
tory parameters incorrectly due to software errors [9].

computer-related recalls. Software defects represent 46.59%
of computer-related recalls and are the major source of
problems for Class 2 recalls, while hardware and battery
failures (28.18%) are common causes of recalls in Class 1,
i.e., those with the most severe impact on the patients [4].
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Figure 1. FDA Recalls 2006 to 2011: Computer-related Failures in Medical
Devices - Causes and Patient Impacts

The external faults and changes that are the sources of
errors in medical monitoring devices can be attributed either
to sensors or patient status. On one hand, the external
environmental changes, physical perturbations, and sensor
failures can cause the delivery of erroneous data inputs to
the device and lead to improper functioning and incorrect
results. For instance, the measured signals can get lost,
noisy, or corrupted because of the failure of sensor nodes,
their intrinsic noise, or electromagnetic interference with
the environment. On the other hand, patient’s movements
or changes of physical activities may cause motion artifacts
or deviation of measured signals from normal bounds.

The internal faults include those that occur within the
computational engines of the device, such as algorithm
inadequacies, software bugs and hardware faults which can
also lead to safety-threatening detection inaccuracy and
delay, or even to failure of the system.

We categorize the sources of failures in monitoring de-
vices to four possible classes listed in Table I. The first three
columns of the table show the origin of faults, their descrip-
tion, and the corresponding symptoms that are observed in
the system’s behavior in accordance with the faults. The last
column of the table provides examples of adverse events

related to each fault category that were reported to FDA. In
this paper we only focus on the causes of data errors, their
impacts on the monitoring results, and the mechanisms for
recovering from such failures.

III. RESILIENT MEDICAL MONITORING

Our proposed methodology for enabling resiliency in
medical monitoring devices provides the following unique
features:

Multi-parameter analysis of multiple physiological sig-
nals and concurrent feature extraction to derive accurate
diagnosis by incorporating redundancy in correlated infor-
mation and individual’s known physiological characteristics.

Medical data fusion and decision mechanism by combina-
tion of multiple physiological parameters with a personalized
profile of user activities to compile a unified health index
that provides an more accurate and personalized picture of
an individual’s health status.

Reconfigurable custom hardware that integrates hetero-
geneous computing modules through hybrid reconfiguration
strategies to meet changing requirements for the application
(different diagnostic needs and monitoring scenarios), per-
formance, and reliability in a cost-effective way.

The main challenge is to build a fusion system involving
heterogeneous physiological data to improve the detection of
patients’ health conditions. The ultimate goal is to compute
a Health Index (HI) [10] that can be used to accurately
characterize an individual’s health status.

To that end, we first extract the basic blocks shared
between different computational kernels used in a vari-
ety of physiological processing algorithms which will be
later mapped onto application-specific, customized, recon-
figurable hardware modules. Examples are statistical metrics
(e.g., mean, standard deviation, and correlation coefficient)
and spectral metrics (e.g., frequency, discrete Fourier trans-
form (DFT), and power spectral density (PSD)). Then based
on the spatial, spectral, and statistical features of physio-
logical signals, a medical fusion and decision process is
developed to combine multiple physiological parameters and
personalized profiles of user activities. The identified physio-
logical signal-processing algorithms are finally mapped onto
application-specific custom hardware through appropriate
reconfiguration strategies. The main challenge is to build
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Figure 2. Monitoring Flow: Patient-specific Multi-parameter Signal Analysis and Fusion
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Figure 3. MATLAB Framework for Evaluation of Monitoring Algorithms

a cost-effective hardware platform under stringent timing,
reliability and power constraints, while ensuring that the
platform is generic and versatile enough to meet various
application needs.

In [5], we took the preliminary steps by designing a
reconfigurable architecture for patient-specific and multi-
parameter monitoring. An FPGA-based hardware prototype
for the architecture is developed on a Xilinx Virtex-5 FPGA
platform and a detailed case study of monitoring patient data
from cardiac ICU is demonstrated to evaluate the feasibility
of the proposed approach in enhancing the robustness in
face of artifacts and masking false alarms caused by external
perturbations or imperfection in the detection techniques.

Figure 2 depicts the overall monitoring flow implemented
in the architecture of [5]. This process starts with collecting
multi-parameter intercorrelated physiological signals (such
as Blood Pressure, Heart Rate, and Electrocardiogram) from
biomedical sensors. It steps through an initial training phase,
in which a physiological signature of the individual (Health
Index), is compiled by aggregating (constructing a vector of)
different statistical features (such as mean and standard de-
viation) from the input signals. During the monitoring phase,
the obtained signature is used as a reference point (patient-
specific threshold) for detecting abnormalities in each signal.
At the end, a fusion technique (such as a majority voting
process) is employed to reach a final diagnostic decision.
The data fusion unit can perform different levels of fusion
(spanning from data- to feature- and decision-level fusion)
according to specific diagnostic needs or the feedback from
the results.

IV. EVALUATION FRAMEWORK

In order to assess the effectiveness of different monitoring
algorithms and fusion schemes, we built a MATLAB-based

simulation framework, shown in Figure 3, based on the
monitoring flow of Figure 2. The inputs to the framework
are the digital data samples of the physiological signals of
interest, the data artifacts model, and the feature extraction,
aggregation, and fusion mechanisms under evaluation.

The framework uses the standard interface library pro-
vided by Physionet [11] to extract physiological data sam-
ples and annotations related to the signals from the the
publicly available MIMIC database [12]. The samples are
fed into the signal analysis unit in order to perform the actual
signal processing. The annotations and artifact models are
used by the framework for cross-validation of the processing
results from the algorithms.

Two sets of annotations generated by the bedside monitors
are extracted from MIMIC database: (i) ICU alarms, indicat-
ing the abnormality on the signals of interest; (ii) Monitor
status alarms, indicating noise and abnormal functioning of
the monitor itself. A third set of alarms called ”Artifact
Alarms” are generated by the framework based on the rules
indicated by the artifacts model. The “Error Alarms” for
each signal is generated whenever either a monitor status
alarm or an artifact alarm happen at a data sample.

The ICU monitor alarms and the alarms generated by
the patient-specific algorithms and fusion mechanism are
validated by investigating the number of alarms that occur
in a close proximity (time interval) to “Error alarms” and
can be assumed to be a false alarm. The accuracy measures
are generated in terms of the number of true indications
of abnormality by the patient-specific algorithms and the
number of masked false ICU alarms by the fusion process.

In the next sections, we present a simple case study of
evaluating monitoring algorithms and artifact models using
the proposed framework.
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V. MONITORING ALGORITHMS

The main part of monitoring flow modeled in the frame-
work are the biomedical signal processing algorithms that
extract different features from the set of measured signals.
The Feature Extraction unit is composed of three compu-
tational kernels: Mean Analysis, Correlation Analysis, and
Analysis for identifying abnormal cardiac activity.

The mean analysis is an effective technique for assessing
the degree of dispersion of numeric physiological data (e.g.
blood pressure and heart rate) from their normal ranges,
based on statistical features such as mean, median, standard
deviation, and absolute deviation. The correlation analysis
involves continuous or window-based auto-correlation coef-
ficient calculation to identify the morphological trends and
changes in physiological waveform data such as Electrocar-
diogram (ECG) and Arterial Blood Pressure (ABP).

1) Patient-specific Monitoring: All employed monitoring
techniques are tailored towards a patient-specific scheme.
In this approach, during the training phase a physiologi-
cal signature of an individual is compiled by aggregating
different features of the collected signals and is used in
the monitoring phase as a reference signature for detecting
abnormalities. In the following two examples of patient-
specific analysis of blood pressure (ABP), heart rate (HR),
and electrocardiogram (ECG) signals are shown using mean
and auto-correlation analysis.

Example 1: Mean Analysis for ABP and HR Monitoring.

Figure 4 illustrates a 10-minutes observation period of
the physiological status for patient #212 (identified with
CHF/pulmonary edema [13]) from the MIMIC database. The
mean analysis monitoring for ABP and HR signals evaluates
the dispersion of the data from their normal range in order to
detect abnormalities. This process starts with the generation
of patient’s normal signature (e.g., calculation of mean (14)
) and standard deviation (o4) of data samples) for a 2-
hour period of alarm-free observations called the “global
window.” In the monitoring stage, the statistical features of
much smaller-sized non-overlapping time intervals, referred
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to as “local windows,” are compared with the global window
signatures. An error (§ = |p; — pg|) of more than 3 times
of o, is classified as an indication of abnormal observation.
This is based on the assumption that blood pressure and
heart rate signals are approximately normally distributed.

The first rows of Figure 4(a) and 4(b) show the ABP
Systolic and HR waveforms and the average value computed
from the training phase. The threshold-based ICU monitor
alarms (i.e., HR > 125 bpm, ABP > 160, or ABP < 80
mmHg) and alarms generated by the proposed mean analysis
are presented respectively in the second and third rows.

Example 2: Correlation Analysis for ECG Monitoring.
We adopt a similar patient-specific approach for analyzing
ECG signals to identify both the morphological and rhythmic
trends and changes in ECG signals. A template matching
technique based on continuous auto-correlation analysis is
used for detection of heartbeats (R peaks in the ECG
waveform) and their classification based on shape (ECG
morphology) and rhythm (R-R interval, the interval between
two consecutive peaks).

During the training period, a patient-specific signature
template is generated, consisting of a normal heart beat
pattern and average beat-to-beat (R-R) interval by analyzing
ECG signals. In the monitoring stage, this template is con-
stantly correlated against the incoming samples for finding
morphological and rhythm abnormalities. Abnormal beat
patterns are detected by identifying the QRS complexes with
high correlation coefficient values (e.g., greater than 90%),
as compared to the normal ECG signature. Also using the
mean analysis technique, R-R intervals are compared with
the average value computed in the training phase (ugg),
and an absolute deviation of more than 3 times standard
deviation (3 X o gr) indicates an irregularity of heart rhythm.

Figure 4(c) illustrates the trend of inter-beat intervals
extracted from ECG signal and their average in the same
period of Figures 4(a) and 4(b). A sample duration of ECG
signal with abnormal intervals from this period is highlighted
in the second row of Figure 4(c). Alarms in the last row are
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triggered whenever any of the beats are either missed or
morphologically distorted within a one second period.

2) Unified Decision Making Through Decision Level Data
Fusion: An example fusion technique based on a simple
majority voting process is applied to concurrently triggered
alarms from processing inter-correlated physiological sig-
nals. Only the alarms which are raised simultaneously with
the alarms from other signals are accepted as real alarm.

Using this fusing mechanism, any corruption of measured
signals due to faults in sensed data or processing engines can
be masked, allowing robust detection of abnormalities. This
approach is intended to improve the diagnostic accuracy by
reducing false alarms and to maintain an appropriate level
of operation even in the case of sensor or processing engine
failures. It also mitigates false alarms caused by patient
movement artifacts or monitor noise.

Figure 5 shows two cases of fusion of monitoring results
from ABP, HR, and ECG signals. The red bars indicate the
false alarms that are masked by the fusion process while
the blue bars are the true alarms triggered concurrently
by different signals. Figure 5(a) presents a case in which
ABP alarms are generated due to abrupt changes in ABP
amplitude (i.e., either >200 mmHg or <80 mmHg), possibly
caused by patient movement artifacts according to the ABP
waveforms and monitor status records. All such alarms
are identified as false alarms and removed when the ABP
analysis is fused with analysis of the other two signals during
the same period of time. Similar considerations apply to the
HR alarms, which are masked when no obvious consistent
abnormality is observed in the ECG signals.

Figure 5(b) shows the 10-minute time slot of Figure
4 during which the ABP, HR, and ECG alarms indicate
abnormalities concurrently. The ABP waveform shows a
sudden drop (to less than 80 mmHg) for around 3 minutes
(174 seconds). The HR signal drops to zero at around the
same time as a result of noise status in ECG leads MCL1
and V, as reported by monitor status records. Meanwhile,
the ECG signal (from lead II) shows obvious disturbance.
The decision fusion analysis thus validates the abnormalities
reflected in decreased ABP, irregular HR, and distorted ECG

signals, which could be identified as a congestive heart
failure symptoms[13].

VI. ARTIFACTS ANALYSIS

In the MIMIC database the malfunction of ICU bedside
monitors and sensors (such as noisy status of different leads)
are collected in the form of logs of monitor status alarms or
so called INOPs (Inoperative or noisy transducers).

Table 11
FREQUENCY AND TYPES OF INOPS GENERATED BY ICU MONITOR
[ INOP Type [ Avg (%) ]
SpO2 NON-PULSATILE 45.18%
PLETH NON-PULSATIL 38.40%
CVP REDUCE SIZE 22.89%
MONITOR STANDBY 19.98%
DECREASE ECG SIZE 3.52%
NOISY-CHK ECG LEAD 3.06%
ABP ZERO+CHECK CAL 2.75%
ABP REDUCE SIZE 1.59%
CANNOT ANALYZE ECG 1.51%
ABP OVERRANGE 1.42%
LEADS OFF 1.12%
LEADS OFF (V) 1.05%
LEADS OFF (II) 0.55%
ABP NO TRANSDUCER 0.29%
INCREASE ECG SIZE 0.25%
ABP UN-PLUGGED 0.11%

Table II shows the most common types of INOPs, reported
over the monitoring periods of 24-48 hours for 15 random
patients in the database. These alarms are related to setup
or hardware faults in the monitor (e.g. LEADS OFF or
MONITOR STANDBY) or the cases where monitor was
unable to process signal properly due to noisy status or
movement artifacts (e.g. DECREASE ECG SIZE, ABP
OVERRANGE, NOISY-CHK ECG LEAD, and CANNOT
ANALYZE ECG). A total number of 385,649 INOPs are
raised for different patients while the total number of patient
alarms is 151,200. About 6% (24198) of the reported INOPs
(lower part of Table II) are related to noisy leads, over-range
values, reduced size, and other problems in blood pressure,
heart rate, and ECG signals.

We classify the artifacts to transient, intermittent, and
permanent errors in sampled data, caused by sensor noise or



Table III
NORMAL RANGE OF PHYSIOLOGICAL SIGNALS

[ Physiologically Normal Range

Blood Pressure (ABP) Nyigp =50 ,Nlgp =240 (mmHyg)
Heart Rate (HR) Nggp =15,Nfp =220 (bpm)
Electrocardiogram (ECG) Npoa = =5, NECG =20 (mV)

Signal

patient movements, sensor disconnection, and sensor failure
respectively. These errors can be identified either from the
trends in signal values or from the INOPs in the database.
The transient data errors are modeled by any deviation of a
single data sample from the normal range of physiological
signals to an out-of-range value (z[i] < N, Vz[i] > N;), or
by a single INOP reported for that data sample (A% p[i] =
1). Table III shows the normal physiological ranges (/V, and
N;7) used to extract out-of-range errors on each signal.

VII. DISCUSSION OF RESULTS

We evaluated the alarms from ICU monitor and our
monitoring algorithms for a 41-hours period of ABP, HR,
and ECG signals of patient 212 from MIMIC database. The
experimental results show that an estimated percentage of
2% of ICU monitor alarms (25004 alarms) are raised in a
close proximity (within 10 seconds) of an Error (Artifact or
INOP) alarm and could be potentially recognized as false
alarms with no real clinical impact.

The accuracy of patient-specific algorithms are evaluated
by calculating the percentage of mismatch between patient-
specific alarms and ICU alarms, as well as the percentage
of potentially false patient-specific alarms (triggered in a
close proximity of an error). For the target patient, a total
number of 69891 (an order of magnitude additional) patient-
specific alarms are raised at locations where no ICU alarms
is triggered. About 8% of these alarms are potentially false
alarms and around 94% of them are related to abnormalities
indicated from Heart Rate (HR) signal. The patient-specific
algorithm raises a HR abnormality alarm on any deviation
of signal from the patient-specific threshold, but the ICU
monitor does not generate alarms in any of the cases since
the HR threshold is fixed at a very high value of 125 bpm.

The accuracy of fusion alarms is evaluated by calculating
the percentage of potential false ICU alarms that are truly
masked through the fusion process.The preliminary results
show that about 10% of fusion alarms are potentially false
alarms. The fusion mechanism masks about 98% of the
ICU alarms from which only 2% are actually false ICU
alarms. The proposed evaluation framework is effective in
demonstrating that a simple majority voting scheme only has
an accuracy of %2 in correct masking of false alarms due to
artifacts, because it can not take into account the correlation
and physiological dependence among the signals. Therefore
a more sophisticated fusion and decision mechanism is
needed for analysis of intercorrelated physiological signals.

More accurate evaluation of the results needs the in-
vestigation of physiological dependence among signals and
clinical events in collaboration with medical professionals.

VIII. CONCLUSIONS

We introduce the main challenges towards enabling
resiliency in embedded medical monitoring devices and
present an overview on the monitoring techniques imple-
mented in the reconfigurable hardware architecture of [5] to
address them. A MATLAB-based simulation framework is
proposed for resiliency evaluation of the signal analysis al-
gorithms using an example monitoring scenario and artifact
model. The experimental results show that the studied de-
tection and fusion mechanisms have limitations in achieving
high accuracy and reliability in monitoring. The proposed
framework can facilitate in-depth study of physiological
dependence among different signals and evaluation of more
sophisticated monitoring algorithms and fusion schemes.
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